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1 Simplicial Spaces and Fibrations

Since geometric realisation of simplicial spaces preserves finite limits, it would not be too surprising if geo-
metric realisation takes ’locally trivial’ maps of simplicial spaces to locally trivial Hurewicz fibrations. The

purpose of this article is to prove such a theorem, which reads as follows:

Theorem 1.0.1: If p: X — Y is a locally F-trivial map of simplicial spaces, and Y is a proper simplicial

space, then |p| is a Hurewicz fibration.

The proof we give is inspired by the proof of Goerss and Jardine that geometric realisation takes minimal
fibrations to Hurewicz fibrations, [1, Ch. I. Theorem 10.9]. In that context, Theorem 10.9 is the key to
showing that geometric realisation takes Kan fibrations to Serre fibrations, which in turn plays a crucial role
in the derivation in [1] of the Quillen model structure on simplicial sets. As an application of Theorem

we recover the theorem:

Theorem 1.0.2: If G is a topological group with a nondegenerate basepoint, then, for any spaces X and Y,
B(Y,G,X) — B(Y,G,«) is a Hurewicz fibration.

For a more direct proof, see |2, Theorem 8.2] and corollaries. Taking Y = * and X = G, we can deduce that
the orbit map EG — BG is a Hurewicz fibration, whenever G is a topological group with a nondegenerate

basepoint.

1.1 CGWH spaces

We begin by recalling some results about the category of CGWH spaces that we will use in this article. Since
these results are not the main focus of the article, we do not provide all of the proofs, instead referring to
Strickland’s notes on CGWH spaces, [3], for the details. Firstly, a useful criterion for recognising when a

continuous bijection of CGWH spaces is a homeomorphism is:

Lemma 1.1.1: If f : X — Y is a continuous bijection between CGWH spaces such that the preimages of

compact Hausdorff subspaces of Y are compact, then it is a homeomorphism.
Proof. This is |3, Proposition 3.17]. O

Lemma 1.1.2: In the category of CGWH spaces, the pullback of a quotient map is a quotient map.



Proof. This is 3| Proposition 2.36]. O

Lemma 1.1.3: If we have a commutative diagram of CGWH spaces:
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AO BO
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such that the bottom square is a pushout, the vertical squares are pullbacks, and the map Ag — Xq is a closed

inclusion, then the top square is a pushout.

Proof. Since i is a closed inclusion, the categorical pushout of ¢ agrees with the usual quotient of XU By, 4}
pg.40], and, since closed inclusions are preserved by pullbacks, |3, Proposition 2.33], the pushout of j is also

given by the usual quotient. Therefore, we have a pullback:

X1|_|B1 *>Y1

l |

XoUBy —— Y)

where the bottom map is a quotient. Therefore, by Lemma|[I.1.2] the top arrow is also a quotient map. There
are two equivalence relations on X; LI By that we care about. The first identifies u ~1 v if u,v € X1 L B; have
the same image in Y;. The second is the smallest equivalence relation ~5 generated by the relations x; ~o by
whenever there exists some a; € A; with images 1 € X7 and b; € B;. We want to show both of these
equivalence relations are equal. Since x1 ~1 by whenever there is such an a1, we have that u ~o v = u ~; v.
If uw ~1 v, write up and vy for the images of v and v in Xy U By. Since their images in Yy are equal, there
is a sequence ug = eg, €1, ..., €, = Vg, with n > 0, of elements of Xy U By such that for every i < n, there is
some a; € Ap such that e; and e;41 are images of a;. It follows that each e; has the same image in Yy, which
corresponds to the image of y, where y is the image of v and v in Y. So (a;,y) is a well-defined element of

A1, and both (e;,y) € X7 U By and (e;41,y) € Xy U By are images of (a;,y). So u ~gy v.



1.2 Locally trivial maps of spaces

Definition 1.2.1: Let F' be a space. We call a map f: X — Y locally F-trivial over a subspace A of Y if

there is a homeomorphism ¢4 : f1(A) — A x F over A:

Clearly, we have:

Lemma 1.2.2: If Y has a numerable, locally finite open cover, {U;}, such that f is locally F-trivial over

each U;, then f is a Hurewicz fibration.
Proof. See |4, pg. 51]. O

The next lemma is central to our main theorem:

Lemma 1.2.3: Let F be a space, let f: X — Y be a map, and let A, B be subspaces of Y such that A C B,
A is a retract of B, and [ is locally F-trivial over A and B via homeomorphisms ¢ o and ¢p respectively.

Then f is locally F-trivial over B via a homeomorphism qb;g which agrees with ¢4 on f~1(A).

Proof. Form the diagram:

where 0 = ¢pa¢5" and €(b, f) = (b, tpo(r(b), f)). Then all horizontal arrows are homeomorphisms, and we

can define ¢y = edp. O

Corollary 1.2.4: Let F' be a space, f: X — Y be a map, and A, B closed subspaces of Y such that f is
locally F-trivial over A and B. If AN B is a retract of B, then f is locally F-trivial over AU B via a

homeomorphism ¢aup which agrees with ¢4 on f~1(A).

As a quick application we have:



Lemma 1.2.5: IF'Y is a CW complex, and f: X — Y is a map which is locally F-trivial over the images

of every cell, (D™), then f is a Hurewicz fibration.

Proof. We can express Y as the transfinite composite of maps Yy — Y, ;1 where each Yy is obtained from
Y) by attaching a single cell. Given a pair of subspaces (A4, U) of some Y such that U C A, A is closed, U is
open and numerable, and p is locally F-trivial over A, we can extend (A, U) to such a pair, (/1, U), on Y by
using open/closed collars around U and A respectively corresponding to half the radius of each attached cell,
D™. Tt follows by induction that A is locally F-trivial, using Corollary and that U is numerable. If we
single out the pairs (4, U) of the form (B(0, 1), B(0, 1)) corresponding to interior balls of half the radius in
each cell, then the corresponding cover of Y by the induced U is a locally finite numerable open cover of ¥

such that p is locally F-trivial over each U. The result now follows from Lemma m O

1.3 Locally trivial maps of simplicial spaces
We now move onto the main theorem, starting with the following definition:

Definition 1.3.1: Let F' be a simplicial space and f : X =Y a map of simplicial spaces. Define P, to be

the pullback:
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where an underline denotes the constant simplicial space on the underlined space. We say that f is locally

F-trivial if, for everyn > 0, there is an homeomorphism of simplicial spaces Y, X A" X F' — P, over Y,, x A™:

Y, x A" x F = P,

If p: X — Y is any map of simplicial spaces, then upon passage to geometric realisations we have a

diagram:
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where the bottom square is a pushout and the vertical squares are pullbacks. By Lemma the top
square is also a pushout, since s(Y,,_1) — Y,, is a closed inclusion. If p is locally F-trivial, then we have
PA2Y, x A" x F over Y,, x A" and Py = (s(Y,—1) x A" UY,, x A™) x F over s(Y,,—1) x A" UY,, x A™.
Recall that a simplicial space is proper if, for every n, s(Y,,—1) — Y, is a Hurewicz cofibration. In this case,
let (H, A) denote (Y, x A", s(Y,,—1) x A" UY,, x 0A™) as an NDR-pair. Then, H(—, 1) defines a retraction
r: A7H[0,1)) = s(Y,_1) x A" UY,, x OA™, where A71([0,1)) denotes the closure of A~1([0,1)). Our main

theorem now states:

Theorem 1.3.2: If p: X — Y is a locally F-trivial map of simplicial spaces, and Y is a proper simplicial

space, then |p| is a Hurewicz fibration.

Proof. Suppose inductively that we have a locally finite numerable open cover {U;}ier of Fi,_1Y such that
p is locally F-trivial over each U;. For each i € I, let V; = r~'a~'(U;) N A~1((0,1)), where 7, A and « are
as defined above. Let W; = e(Vi/) U U;, which can be viewed as a collar around U;. Then W; is open in
F,Y, since U; is open in F,,_1Y. We’ll show that p is locally F-trivial over W;. By assumption, we have a

trivialisation:

S

<
Q\



Since ¢ is locally F-trivial over Vil, Lemma implies that there is a trivialisation of ¢ over Vi/ which

agrees with ¢,/ on g 1 (U;), call it ¢y,

, ¢y
(V) ———— V) x F

\/

By Lemma p~1(W;) is the pushout of the maps ¢~ (U;) = ¢~ (V; ) and ¢~ *(U;) — p~*(U;). Similarly,
since left adjoints preserves colimits, W x F is the pushout of the maps U; x F — V; x F and U; x ' — U; x ..

Therefore, ¢, and ¢y, induce a homeomorphism ¢y, :

P —— WX F

which shows that p is locally F-trivial over W;, as desired. We now explain how to complete the inductive
proof of the theorem. We define W' = ATH(3,1]) C Y, x A" and let W = e(W'). Then, W is an open
subspace of F,,Y and p is locally F-trivial over W, since W S Wisa homeomorphism, via Lemma m
It is clear that W is a numerable open subspace of F,,Y. We also need to check that each W; is a numerable
subspace of F,,Y. If U; = ui_l(((), 1]), for some p; : F,,_1Y — I, we can define v; : F,,Y — I using the map

1, and the map x on Y,, x A" defined by:

(1 - )‘(yat)),uiar(f%t)a if (yvt) € 5‘([07 1))

0, if My, t)=1

“i(yv t) =

So k71((0,1]) = V; and v;'((0,1]) = Wi. Now observe that {W;}ic; along with W is a locally finite
numerable cover of F,,Y, and if y € F,,_;Y has an open neighbourhood P in F,_;Y intersecting U; only if
Jj € J C I, then there exists an open neighbourhood @ of y in F,,Y which intersects W; only if j € J and
doesn’t intersect W. Moreover, we can take Q N F,,_1Y = P. Note also that W; N F,,_1Y = U;, and ¢w,
agrees with ¢y, on p~1(U;). Therefore, we can iterate this procedure along the sequential colimit of the maps
FY — F;11Y, and we will end up with a numerable locally finite open cover of Y, such that p is locally

F-trivial over each open set in the cover. It follows that p is a Hurewicz fibration by Lemma [1.2.2 O

Finally, we apply Theorem to prove that the orbit map EG — BG is a Hurewicz fibration, whenever G

is a group with a nondegenerate identity element, which we define to be the basepoint. It is straightforward
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to show that this condition ensures that B(Y, G, X) is a proper simplicial space, |2, Proposition 7.1]. We now

prove:

Theorem 1.3.3: If G is a topological group with a nondegenerate basepoint, then, for any spaces X and Y,
B(Y,G,X) — B(Y,G,«) is a Hurewicz fibration.

Proof. We will show that the corresponding map of simplicial spaces is X-locally trivial. We have a commu-

tative square:

B(Y,G,X) x A" — B(Y,G, X)

! l

B(Y,G,#) x A" —— B(Y,G, %)

and, therefore, we have an induced map of simplicial spaces ¢ : B(Y,G,X)n x A" =2 B(Y,G, *)n x X X
A" — P, over B(Y,G,*)n x A"™. It suffices to show that ¢ is a homeomorphism. A generic element of
B(Y,G, *)n x X x AT is of the form o = (7, g1, ...,gn,:%,(j)), where 9 is a morphism from m — n in A. A
generic element of (P, ), is of the form 8 = (4, g1, - gn> 0), (¥, 915 s Goms & )), Where 8 is a morphism m — n
in A and 9(y, 91, -, 9n) = (y/,g/17 ...7g;n) in B(Y,G, ). Now 8 =¢(a) iff § =y,d1 = g1,-,9n = Gn, 0 =0
and Z = h 'z’ where h is a product of the g; which depends on 0. It follows that for every g there is a
unique « such that ¢(a) = B, so ¢ is a continuous bijection. We will show that ¢ is proper in the sense
of Lemma m Using the existence of inverses, and the fact that A7 is a discrete space, we have that
B(Y7G,X)n x A" — B(Y,G,X) x B(Y, G,*)n x A™ is the inclusion of a retract. It follows that if A is
compact Hausdorff in (P,),,, then the closed subspace ¢~!(A) is contained within a compact subspace, and

therefore is compact itself. O

When G is a topological monoid with a nondegenerate basepoint, it is straightforward to check that B(Y, G, X) —
B(Y, G, *) is not necessarily a Hurewicz fibration. However, as explained by May in [5], it is possible to use

an inductive argument of a similar nature to our proof of Theorem to prove:

Theorem 1.3.4: If G is a grouplike topological monoid with a nondegenerate basepoint, then B(Y,G, X) —
B(Y, G, ) is a quasifibration.

Proof. See [5]. O
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