1 Finitely generated nilpotent spaces

In these notes, we will present a proof of the following theorem, which is Theorem 4.5.2 of [1].
Theorem 1.0.1: Let X be a nilpotent space. Then the following statements are equivalent:

i) X is weakly equivalent to a CW complex with finite skeleta,
it) X is f-nilpotent,
ii1) m;(X) is finitely generated for each i > 1,

i) m(X) and, for i > 2, H;(X) are finitely generated,

v) H;(X) is finitely generated for each i > 1.

The strategy of proof is as follows. We first develop some basic algebra concerning nilpotent groups which
will immediately imply i) <= iii). We then present a result from Wall’s classical paper ”Finiteness
Conditions on CW complexes” which, along with the algebraic theory developed earlier, will allow us prove
the implication iv) <= ). We also use our previous algebraic work to show that K(A,n) can be modelled
by a CW complex with finite skeleta whenever A is a finitely generated abelian group. We will use this
information to prove Serre’s classical result showing that, for simply connected spaces, H;(X) is finitely
generated for all ¢ iff m;(X) is. This allows us to prove iii) <= iv). We finish with a proof that v) = iv),

again making use of our previous work. Observe that the implication i) = wv) is trivial.



1.1 Algebraic Results

Let G be a group. We record here the definition of a nilpotent group and some of their basic properties. The

proofs of the results of this page can be found in Chapter 2 of [3]
Definition: A group G is called nilpotent if there exists a finite series of subgroups of the form:
1:G0C01C...CGk:G7

such that each G; is normal in G and, for every i, Ggfl C Z(g ).

Definition: The lower central series of G is the normal series defined by:
’Yo(G) =G
Yi+1(G) = [G,%(G)].
Definition: The upper central series of G is the normal series defined by:

G(G) =1
Gi+1(G) =7 (Z ()

Almost by definition, if either series terminates then the obtained series expresses G as a nilpotent group.
Moreover, the upper central series ascends faster than any other series expressing G as a nilpotent group in
the sense that if 1 = Go C G; C ... C G), = G expresses G as a nilpotent group, then G; C (;(G). Similarly,
the lower central series descends faster than any other series expressing G as a nilpotent group. It follows

that G is nilpotent iff the upper central series terminates iff the lower central series terminates.

There is also an epimorphism:

. %’(G) Yi 1(G)
¢ S0 @ ANG) =

defined by:

¢({a},{g}) = {la, gl}-



The results of the previous page allow us to prove the bulk of the following theorem. The remainder of this

subsection will be devoted to proving the final sentence.
Theorem 1.1.1: Let G be a nilpotent group. Then the following are equivalent:

i) G is finitely generated,
it) Ab(G) is finitely generated,
ii1) G 1is f-nilpotent,

iv) Every subgroup of G is finitely generated.
Moreover, if these conditions are satisfied, then G is finitely presentable and Z|G] is a Noetherian ring.

Proof: The implications iv) = ) == ii) are trivial. The implication ii) == 4ii) follows, inductively,
from the epimorphism described on the previous page. It remains to prove iii) = 4v). For this we start
with the fact that all subgroups of a finitely generated abelian group are finitely generated. Suppose that

the series:
1:G0—>G1—>—>Gm:G

expresses G as an f-nilpotent group. Assume that every subgroup of Gy is finitely generated and consider

the short exact sequence:

G
1= Gy = Gy = 5+ — 11
in which both G and the finitely generated abelian group G(’;—Zl satisfy Max, that is every subgroup of them
is finitely generated. Now if H is a subgroup of Gi1, then the image of H in Gc’j,—:l is finitely generated, as
well as H N Gy. It follows that H is finitely generated, and so Gjy; satisfies Max. It follows, inductively,

that G satisfies Max. O

For the remainder of this subsection, assume that G is a finitely generated nilpotent group. The fact that Z[G]

is Noetherian holds more generally for polycyclic groups, and we begin by showing that G is polycyclic.

Definition: A group G is called polycyclic if it has a subnormal series of the form:
1=Go—> Gy — ... > G, =G

in which each quotient is a cyclic group.

By the structure theorem for finitely generated abelian groups, we know that finitely generated abelian groups
are polycyclic. The fact that G is polycyclic follows from this fact and an induction up a series expressing G

as an f-nilpotent group, using the next lemma.



Lemma 1.1.2: If K and H are polycyclic in the short exact sequence of groups:
1-K—-G—H-—1,
then G is polycyclic.

Proof: Let the subnormal series {K;} and {H;} express K and H as polycyclic groups. Then we define a

subnormal series on G by:
1=Ky— Ky — .. > K, =K=f"1YHy) — f'(H)— ..~ fY(H,) =G

The fact that this series expresses G as a polycyclic group follows from the third isomorphism theorem for

groups. (I
The following lemma, and corollary, is due to P.Hall ([4], Theorem 1).

Lemma 1.1.3: Suppose that H is a normal subgroup of G such that % is either finite or infinite cyclic, and
that N is an H-submodule of the right G-module M such that M = NG. Then if N satifies Max-H, M

satisfies Maz-G (that is all G-submodules of M are finitely generated as G-modules).

Proof: If % is finite, then let go, ..., gn be elements of G representing each element of % Then Ng; is an
H-submodule of M for each ¢ and we have an epimorphism ®;Ng; — M, since M = NG. If A is an H-
submodule of Ng;, then A = {n € N|ng; € A} is an H-submodule of N and so is finitely generated. It follows
that Ng; satisfies Max-H and, therefore, so do ®; Ng; and M. It follows that M satisfies Max-G.

If % = 7, let g be an element of G representing 1 € % Then, since M = NG, every element m € M is of

the form:

m = angk

kEZ

where ng € N for all k, and all but finitely many of the nj are 0. Let A be a G-submodule of M. If p, g are

integers such that p < ¢, define the H-submodule N, , of N by:
Ny = {n € N| there exists >, nxg"® € A such that n; = 0if i <por i > q and n, = n}

Multiplication by g and its inverse shows that IV, ; depends only on the value of ¢ — p, so define IV; = Ny ;

for i € N. Then we have an ascending chain of H-submodules of N:
Ny C Ny C ...

Since N satisfies Max-H, this sequence must terminate after finitely many steps, say at N;, j € N.



For each i < j, let {mj 0, mi1,...,mi+, } be a set of elements of A representing a generating set for N;. We

claim that this is a generating set for A as a G-module. Suppose that:

m = angk

k€EZ

is an element of A. By subtracting elements of the form m; ;¢*h and multiplying by some g*, we may assume
that ny = 0 for £ < 0 and £ > j — 1. Then, by subtracting elements of the form m; +h, where ¢ < j, we can

reduce all the way to 0. Hence, A is a finitely generated G-module, as desired. O
Corollary: If G is a polycyclic group, then Z[G] is a Noetherian ring.

Proof: This follows from the previous lemma, the definition of a polycyclic group and the observation that

if H < G, then Z[H] is an H-submodule of Z[G], and Z|G] = Z[H]G. Also, Z[1] = Z is Noetherian. [J

This shows that f-nilpotent groups have Noetherian group rings. The final task of Theorem 1.1.1 is to show
that they are also finitely presented. We know that finitely generated abelian groups are finitely presented,
and so the result will follow by inducting up a series expressing G as an f-nilpotent group, using the following

lemma:

Lemma 1.1.4: If K and H are finitely presented in a short exact sequence of groups:
1-K—-G—H-—1

then G is also finitely presented.

Proof: Let H = < S | R > be a presentation of H, where S is a finite set and R C W (S, S™!) is a finite
subset of the words in S and their inverses. Similarly, let K = < P ;@ > be a finite presentation of K.
Then we have an epimorphism ¢ :< SU P , > — G defined by sending elements of P to their images in G

and elements of S to a chosen preimage in G.
We will define three finite subsets of the kernel of ¢. Firstly, we have
QCcW(P,PHcW({(SuP),(SUP)™.

1

For each r € R, we have ¢(r) € K. Let w, be a word in P and P~! representing ¢(r)~!. Then we

define:
R = {rw, | re R} Cc W(SUP,(SuP)™)

Now let (s,p) be a pair consisting of an element s € SUS™! and an element p € PU P~!. The image of the

conjugate p® is in K and so let wy, ;) be a word in P and P~! representing ¢(p*)~*. Define:
T ={p°wey | s€SU S~ lpe PUPt}.

We claim that G= < SUP | QUR UT >.



Suppose that:
wW1V1W2V2.. WLV

is a product of words in P and P~! (the w;) and words in S and S~! (the v;), which is in the kernel of ¢.
Then v;...v; is a product of conjugates of elements of R. Therefore, by multiplying by conjugates of elements

of R/, we may assume that vi...vxy = 1. In this case our word is of the form:
wit. gk
where the w; are words in P and the v; are words in S. In fact we may assume that each v; is an element of

SUS™!, and each w; is an element of P U P~!. Then this word is of the form:

-1 -1
t(slvpl)w(sl,pl) "'t(skvpk)w(sk,pk)

where t(,, ) is the element of T' corresponding to (s;, p;). Hence, by multiplying by conjugates of elements
of T', we may assume our original word is of the form wi, a word in P and P~!. This case is then dealt with

by multiplying by conjugates of elements of @ to reduce to 1. O
Corollary: If G is an f-nilpotent group, then G is finitely presentable. |

We finish this algebraic section by providing the proof of the implication i) <= iii) of Theorem 2.0.1
which is purely algebraic. Firstly, we recall what we mean by a nilpotent space. Let X be a space and
let 1 = m1(X). We call a (left) module over the group ring Z[r] a m-module. So, in particular, m;(X) is
a m-module for ¢ > 2. By a m-group, we mean a group with a left action of m by homomorphisms. So all

m-modules are m-groups.

Definition: Let G be a m-group. Then G is a nilpotent w-group if there is a sequence of m-subgroups of G

of the form:

1=GocGiC..CcG,=G

such that, for every i, GG; is normal in G, % C Z(g) and 7 acts trivially on %

i i

We let 7 act on itself via conjugation. We then have the following definition:
Definition: A nilpotent space X is a space for which m;(X) is a nilpotent m-group for ¢ > 1.

Observe that when ¢ = 1, the definitions reduce to saying that m1(X) is a nilpotent group. We say that a

space is f-nilpotent if the quotients % can be taken to be finitely generated as abelian groups, that is

7;(X) is an f-nilpotent m-group for all 4.



With our algebraic work in hand we can now prove:

Corollary 1.1.5: Let X be a nilpotent space. Then X is an f-nilpotent space iff m;(X) is finitely generated

fori>1.

Proof: If X is f-nilpotent, then m;(X) is an f-nilpotent group for all i > 1. It follows that m;(X) is finitely

generated for ¢ > 1.

If m;(X) is finitely generated for all i > 1, then we have two cases. If ¢ > 2 then the group m;(X) is abelian
and so all subgroups are finitely generated. In particular, any series expressing 7;(X) as a nilpotent 7m-group

will have finitely generated quotients.

For the case ¢ = 1, we have that 71(X) is a finitely generated nilpotent group and, hence, an f-nilpotent
group. A normal subgroup of 7 is (equivalent to) a m-subgroup, since 7 is acting on itself by conjugation.
Moreover, 7 acts trivially on the quotient groups of any series expressing m1(X) as an f-nilpotent group. It
follows that 71(X) is an f-nilpotent m-group, as desired. Taking both cases together, we have that X is an

f-nilpotent space. O



1.2 A Theorem of Wall

In this subsection we will prove a theorem of Wall concerning when a space is weakly equivalent to a
CW complex with finite skeleta ([2], Theorem A). This will allow us to immediately prove the implication

iv) <= i) of Theorem 2.0.1, and the theorem will continue to be useful for the remaining implications.

Theorem 1.2.1: A space X is weakly equivalent to a CW complex with finite skeleta iff each of the following

conditions is satisfied:

i) m = m(X) is finitely presented,

it) for every map o : K — X from a connected finite CW complex K which induces an isomorphism on
fundamental groups, m1(Fo) is finitely generated as a w-module,

ii1) for every n-connected (n > 2) map o : K — X from a finite CW complex K, m,(Fo) is finitely generated

as a m-module.

Proof: ( < ) We'll first show that if each of the conditions is satisfied, then X is weakly equivalent to
a CW complex with finite skeleta. Since 7 is finitely presented, we can construct, using the van Kampen
theorem, a finite CW complex K, with cells of dimension < 2, equipped with a map ¢ : K — X inducing an

isomorphism on fundamental groups. We have the exact sequence of m-modules:
.. > ma(Fo) = ma(K) = m(X) — m(Fo) = 0

where m(Fo) is abelian since it is a quotient of m2(X), and the action of 7 is induced by 7 = 71(K) in
the underlying fiber sequence. By assumption, 71(F¢) is finitely generated as a m-module, so choose finitely
many elements of mo(X) which correspond to generators of w1 (F'o) under the given surjection. Form a finite
CW complex K ,and a map & : K— X , by wedging a copy of S? to K for each chosen element of m3(X),
and define the map & by sending each copy of S? to a representative of the corresponding element of 75 (X).

Given the exact sequence above, it is straightforward to see that the map 6 : K — X is 2-connected.

Now suppose that we have constructed an n-connected map o : K — X from a finite CW complex K, where
n > 2. We will show that by adding finitely many (n+ 1)-cells to K, we can extend o to an (n+ 1)-connected
map. In light of the previous paragraph, this will complete the first half of the proof. We have the exact

sequence:
e = M1 (K) = g 1(X) = mp(Fo) = mp(K) = mp(X) — 0

By assumption, m,(Fo) is finitely generated as a m-module. Therefore, the kernel of o, : m,(K) — m,(X)
is finitely generated as a m-module. Form a finite CW complex K, and a map & : K-> X , by attaching
(n+ 1)-cells along representatives of a finite generating set for the kernel of o, with the map & defined using
chosen nullhomotopies in X. Then we have a surjection m,(K) — 7, (K), since 7, (K, K) = 0, with kernel

equal to the kernel of o,. It follows that ., : m,(K) — m,(X) is an isomorphism. We then have the exact

sequence:



e = M1 (K) = g1 (X) = mp(F6) = 0

induced by . By assumption, m,(F&) is a finitely generated m-module. Therefore, we can wedge finitely
many copies of S"! to K, in the exact same way as in the n = 1 case, to form a finite CW complex L and

an (n + 1)-connected map L — X, as desired.

( = ) For the converse, we may assume that X is a CW complex with finite skeleta, for example by
repeatedly using the fill-in lemma ([1], Lemma 1.2.3). By the van Kampen theorem, it is clear that = is
finitely presented. We will first show that if (Y, B) is an n-connected CW-pair (n > 1) such that Y has finite
skeleta, then there exists a weak equivalence of CW pairs (Y, B) — (Y, B) such that Y has finite (n 4 1)-
skeleton and B contains the n-skeleton of Y. By enlarging the subcomplex B by attaching 1-cells between a

vertex of B and a vertex of Y\ B, we may as well assume that B contains every vertex of Y.

For each 1-cell e, of Y which is not in B, let f, : 9A' — B be its attaching map. Since (Y, K) is connected,
fa is nullhomotopic. This nullhomotopy can be expressed as a map g, : A2 — B, which restricts to f, on
the boundary of the Oth face. We can extend g, to a map h, : 0A? — Y by letting the restriction of A,
to the Oth face be the inclusion of the cell e,. Since (Y, B) is 1-connected, we can modify g, so that h,, is
nullhomotopic. Define B; to be the pushout:

UgA2 =292 B

|

|_|aA2 Emd Bl

Then we have an inclusion j : Y(1) — B; and we can use the fact that he is nullhomotopic for all a to define
amap r : By — Y such that rj is the inclusion of the 1-skeleton of Y. It is also clear that the inclusion

B — By is a weak equivalence.

Now we repeat this process to construct a CW pair (B’n, B) equipped with an inclusion j : Y(,,y — B, and
amap r : B, — Y such that rj is the inclusion of the n-skeleton and the inclusion B — B, is a weak
equivalence. We define B = B,,. Let Z be the CW complex obtained by attaching the remaining cells of ¥
(of dimension greater than n) onto the subcomplex Y, of B. Then Z contains Y as a subcomplex and we
can extend the maps r and j in the obvious way and we have rj = 1. It is clear that ry : m(Z) — m(Y)
is a surjection for all x and is an isomorphism for x < n — 1. We claim that r, is also an isomorphism.
Suppose that ¢ : S™ — Z becomes nullhomotopic after applying r. By the cellular approximation theorem,
¢ is homotopic to a map which factors through Z(,,) C B. Since the inclusion B — B is a weak equivalence,
we may even assume ¢ factors through B. Now the restriction of r to B is the inclusion of B into Y, and
so ¢ is nullhomotopic in Y. This means that ¢ is nullhomotopic in Z, since Z contains Y as a subcomplex.

It follows that r, is injective, and, hence, an isomorphism as desired. Finally, we construct Y by attaching

cells of dimension > n + 2 to Z to extend r to a weak equivalence. Then the inclusion (Y, B) — (fﬂ B) is a

9



weak equivalence where Y has finite (n + 1)-skeleton and }A’(n) C B as desired.

To complete the proof, let o : K — X be a map from a finite CW complex K, as in condition ii) or iii). Then
we may as well assume that ¢ is a cellular map and then replace ¢ by the inclusion i : K — Mo, where Mo
is a CW complex with finite skeleta and K is a subcomplex. By assumption, ¢ is n-connected with n > 1
and so we may consider a CW pair (Y, B) in which ¢ corresponds to the inclusion B — Y, B contains Y,

and Y has finite (n + 1)-skeleton. We have:
T (Fo) = 01 (Y, B) = my1 (Y, B) = Hoa (Y, B),

where the final equality follows from the relative Hurewicz theorem and the middle equality follows, when
n = 1, from the fact that ¢ induces an isomorphism on fundamental groups. Considering the cellular chain
complex of (}7, B), we see that it is zero at degree n and is a finitely generated m-module at degree n + 1. It

follows that the quotient group Hn+1(}7, B) is a finitely generated m-module as desired. O

The following corollary is useful for applications:

Corollary 1.2.2: If X is a space such that m (X) is finitely presented, Z[n] is a Noetherian ring and H;(X)

is a finitely generated w-module for all i, then X is weakly equivalent to a CW complex with finite skeleta.

Proof: Suppose that o : K — X is an n-connected map (n > 1) from a finite CW complex K which
induces an isomorphism on fundamental groups. Then we have 7;(Fo) 2 H;y1(X, K). Consider the exact

sequence:

v = Hi 1 (K) = Hi (X)) = Hip1 (X, K) = Hi(K) — Hy(X) =0
HZ-H(X’ ) is a finitely generated m-module by assumption and Hl(k ) is too since K is a finite cell complex.
Since Z[n] is Noetherian, any submodule of H;(K) is also a finitely generated m-module. It follows that
H;;1(X,K) is a finitely generated 7-module, which means that X satisfies the conditions i) - iii) of the

theorem. O

Corollary 1.2.3: If A is a finitely generated abelian group, then K(A,1) is weakly equivalent to a CW

complex with finite skeleta.

10



Finally, for this subsection, we prove the implication iv) <= i) of Theorem 2.0.1. For the proof, we will

need to use the fact that, if X is a nilpotent space, then H;(X) is a nilpotent m-module for all i.

Corollary 1.2.4: If X is a nilpotent space, then X is weakly equivalent to a CW complex with finite skeleta

iff m(X) and H;(X) are finitely generated for all i.

Proof: If X is a nilpotent space which is weakly equivalent to a finite CW complex, then 7 is finitely

presented, and, hence, a finitely generated nilpotent group. Moreover, H;(X) is finitely generated as a 7-
module. Since Z[r] is Noetherian, it follows that all quotients of a series expressing H;(X) as a nilpotent
m-module are finitely generated m-modules on which 7 acts trivially. This means they are finitely generated

abelian groups. Inducting up the series, we see that this implies that HZ(X' ) is also a finitely generated

abelian group, as desired.

Now assume that 71(X) and H;(X) are finitely generated. Then 7 is f-nilpotent and, therefore, 7 is finitely

presented and Z[r] is Noetherian. Since H;(X) is also finitely generated viewed as a m-module, Corollary

2.2.2 implies that X is weakly equivalent to a CW complex with finite skeleta. a

11



1.3 A Theorem of Serre

In this subsection we will prove a classical result of Serre - that for simply connected spaces X, all homotopy
groups of X are finitely generated iff all homology groups of X are. Following [1], the strategy of proof will
be to replace the simply connected space X by a Postnikov tower and induct up it using the Serre spectral
sequence. In the previous subsection, we showed that if A is a finitely generated abelian group, then K (A, 1) is
weakly equivalent to a CW complex with finite skeleta, and so, in particular, has finitely generated homology

groups. The next lemma allows us to extend this result to K(A4,n) for n > 1:

Lemma 1.3.1: If X is simply connected, then H;(X) is finitely generated for all i iff H;(Q2X) is finitely

generated for all i.
Proof: Consider the Serre spectral sequence for the fibration:
QX - PX > X

where the local coefficient is trivial since X is simply connected. Since PX is contractible, the only non-zero

term of the E°°-page is Egj = Z. We have exact sequences:

El, v = B, — E{H =0
Suppose that H;(X) is finitely generated for all ¢, and that H;(Q2X) is finitely generated for ¢ < g. Then, for
r>2:

E2,q—r+1 = H, (X, Hy—r41(22X))

T

is finitely generated, since if A, B are finitely generated abelian groups, then T'ory (A4, B) is finitely generated
since it can be expressed as a homology group of a chain complex of finitely generated abelian groups. It
follows that EJ ,_, ., is finitely generated, and by induction using the exact sequence above, that Eg’q =
H,(Q2X) is finitely generated. Therefore, by induction, if H;(X) is finitely generated for all ¢, then H;(QX)

is finitely generated for all i. The proof of the reverse implication is entirely analogous. O

Corollary 1.3.2: If A is a finitely generated abelian group and n > 1, then K(A,n) is weakly equivalent to

a CW complex with finite skeleta.

Proof: Inductively, Lemma 2.3.1 implies that H;(K (A, n)) is finitely generated for all 7, so the result follows
from Corollary 2.2.2. |

12



Theorem 1.3.3: If X is simply connected, then m;(X) is finitely generated for all i iff H;(X) is finitely

generated for all i.

Proof: Since X is simple, we can assume that X is the limit of a Postnikov tower:
= X1 2 Xy = o2 Xy =%

Therefore, we have fibrations:
Xnt1 = Xp = K(mpp1(X),n + 2)

If H;(X,) is finitely generated for all i, then inspection of the argument given in Lemma 2.3.1 shows that
we only used the fact that the E°° page was finitely generated. Therefore, the argument can be generalised
to show that H;(X,,4+1) is finitely generated for all ¢ iff H;(K (m,+1(X),n + 2)) is finitely generated for all s.
Therefore, if 7;(X) is finitely generated for all ¢, an inductive argument using the fact that H; (K (m,41(X), n+
2)) is finitely generated for all ¢ and n, shows that H;(X,,) is finitely generated for all ¢ and n. It follows that

H;(X) is finitely generated for all ¢, since the groups H;(X,,) eventually stabilise at H;(X) for large n.

Now suppose that H;(X) is finitely generated for all ¢. The map X — X,, is an (n + 1)-equivalence, since
Tnt1(Xpn) = 0, and so H;(X) — H;(X,,) is an isomorphism for ¢ < n and a surjection when ¢ = n + 1. It
follows that H;(X,,) is finitely generated whenever i < n + 1. Suppose that we have proved that m;(X) is
finitely generated for ¢ < n. Then inductively, similarly to our previous work, we can show that H;(X;) is

finitely generated for i < n and all j. Consider the Serre spectral sequence for the fibration:
Xrn+1 — X, = K(’]TnJrl(X),TL + 2)

Then E}7, is finitely generated for all p and ¢, and Ef , is finitely generated whenever ¢ < n + 2. We also

have E2 5 o = mpp1(X). We have exact sequences:
r+1 r r
0= E 50— Enioo— By iy,

When r =n + 2, E;ié’o =Erspand B} o, 4 = E(’};?H and so both of these are finitely generated. It

follows that EZIS!O is finitely generated. For 2 <r < n+ 2, E] 1 = 0 and so, inductively, it follows

—r—2,r—

that E2 42,0 = Tny1(X) is finitely generated, as desired. It follows, again inductively, that 7;(X) is finitely

generated for all 1. O

13



We can now prove another implication of Theorem 2.0.1:

Corollary 1.3.4: If X is a nilpotent space, then 7;(X) finitely generated for each i > 1 iff m(X) and, for

1>2, Hi(X) are finitely generated.

Proof: If 7;(X) is finitely generated for i > 1, then so is m; (X) and so Theorem 2.3.3 applies to show that
H;(X) is finitely generated for all i. On the other hand, if m; (X) and, for i > 2, H;(X) are finitely generated,

then Theorem 2.3.3 tells us that m;(X) (= m;(X)) is finitely generated for ¢ > 2 and so all homotopy groups

of X are finitely generated. O

14



1.4 The final implication

We have already shown that the first four conditions of Theorem 2.0.1 are equivalent and that i) = v).
Therefore, to complete the proof of Theorem 2.0.1 we just need to show that v) implies any one of i) — iv).
We will show that v) = iv). For the proof, we will want to assume that the nilpotent space X is, in fact,

the limit of a Postnikov A-tower and to define the 'universal cover’ of X to be the fiber of the fibration:
X - X - K(m(X),1)

induced by the tower. As justification for doing this, consider a fibrant cofibrant approximation X of X in
the Quillen model structure on topological spaces, so that there is a weak equivalence between the fiber of the
composite fibration X — K (m(X),1) and X. Finally, for the justification, note there is a weak equivalence
from the universal cover of X to the fiber of this composite fibration. Recall also that, if X is nilpotent, then

m1(X) acts nilpotently on H;(X), since this fact plays a key role in the following proof:

Theorem 1.4.1: Let X be a nilpotent space. If H;(X) is finitely generated for each i > 1, then m(X) and,

fori>2, Hi(X) are finitely generated.

Proof: By the Hurewicz theorem, the abelianisation of the nilpotent group = = 71 (X) is finitely generated,
and so it follows that 7 itself is finitely generated by our algebraic result, Theorem 2.1.1. Consider the Serre

spectral sequence of the fibration:
X > X — K(n,1)

Since = is finitely presented and Z[r] is Noetherian, it follows that K (m,1) is weakly equivalent to a CW
complex with finite skeleta. The E°° page is finitely generated by assumption, and we have that E12770 =
H,(K(m,1); Ho(X)) = H,(K(m, 1)) is finitely generated. Suppose that we have shown H;(X) is finitely

generated for i < n. We have exact sequences:
E! —Ey, . —ETL =0
r,n—r-+2 0O,n+1 0,n+1

Now, EZ, .o = H.(K(m,1); Hp—rio(X)) and, if 7 > 2, this is finitely generated since it is the homology of a
complex of finitely generated abelian groups, namely the cellular chain complex, with finitely generated local

coefficients, of a CW complex with finite skeleta. It follows, inductively, that Egyn 41 is finitely generated.

We have:

E§ 1 = Ho(K(m,1); Hn1(X)) = Hpa (X) /7

Let:

1= GO — .. = Gk = Hn+1(X)

be a sequence of m-submodules of H,,1(X) expressing H,1(X) as a nilpotent m-group.
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Consider the exact sequence of homology groups with local coefficients:

o= Hy(K(m,1); 55 — Ho(K (7,1);Gi) — Ho(K (7, 1); Gign) — Ho(K (m,1); S51) = 0

When ¢ = k — 1, the end surjection implies that Hq(K (7, 1); GC:’“ ) = fol is finitely generated. This

—1

implies, along with the fact that K(m, 1) is weakly equivalent to a CW complex with finite skeleta, that

Hy(K(m,1); G(:fl) is finitely generated. It follows that Ho(K(m,1);Gr_1) is finitely generated. Continuing

in this fashion down the series express Gy as a nilpotent m-group, we find that Ho(K (7, 1); Ggl) = % is

finitely generated for all 7. It follows that H,,+1(X) is f-nilpotent and, hence, finitely generated. Inductively,

it now follows that H;(X) is finitely generated for all i, as desired. a
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