
1 Finitely generated nilpotent spaces

In these notes, we will present a proof of the following theorem, which is Theorem 4.5.2 of [1].

Theorem 1.0.1: Let X be a nilpotent space. Then the following statements are equivalent:

i) X is weakly equivalent to a CW complex with finite skeleta,

ii) X is f -nilpotent,

iii) πi(X) is finitely generated for each i ≥ 1,

iv) π1(X) and, for i ≥ 2, Hi(X̃) are finitely generated,

v) Hi(X) is finitely generated for each i ≥ 1.

The strategy of proof is as follows. We first develop some basic algebra concerning nilpotent groups which

will immediately imply ii) ⇐⇒ iii). We then present a result from Wall’s classical paper ”Finiteness

Conditions on CW complexes” which, along with the algebraic theory developed earlier, will allow us prove

the implication iv) ⇐⇒ i). We also use our previous algebraic work to show that K(A,n) can be modelled

by a CW complex with finite skeleta whenever A is a finitely generated abelian group. We will use this

information to prove Serre’s classical result showing that, for simply connected spaces, Hi(X) is finitely

generated for all i iff πi(X) is. This allows us to prove iii) ⇐⇒ iv). We finish with a proof that v) =⇒ iv),

again making use of our previous work. Observe that the implication i) =⇒ v) is trivial.
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1.1 Algebraic Results

Let G be a group. We record here the definition of a nilpotent group and some of their basic properties. The

proofs of the results of this page can be found in Chapter 2 of [3]

Definition: A group G is called nilpotent if there exists a finite series of subgroups of the form:

1 = G0 ⊂ G1 ⊂ ... ⊂ Gk = G,

such that each Gi is normal in G and, for every i, Gi+1

Gi
⊂ Z( GGi ).

Definition: The lower central series of G is the normal series defined by:

γ0(G) = G

γi+1(G) = [G, γi(G)].

Definition: The upper central series of G is the normal series defined by:

ζ0(G) = 1

ζi+1(G) = π−1(Z( G
ζi(G) )),

Almost by definition, if either series terminates then the obtained series expresses G as a nilpotent group.

Moreover, the upper central series ascends faster than any other series expressing G as a nilpotent group in

the sense that if 1 = G0 ⊂ G1 ⊂ ... ⊂ Gk = G expresses G as a nilpotent group, then Gi ⊂ ζi(G). Similarly,

the lower central series descends faster than any other series expressing G as a nilpotent group. It follows

that G is nilpotent iff the upper central series terminates iff the lower central series terminates.

There is also an epimorphism:

φ :
γi(G)
γi+1(G)

⊗Ab(G)→ γi+1(G)
γi+2(G)

defined by:

φ({a}, {g}) = {[a, g]}.
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The results of the previous page allow us to prove the bulk of the following theorem. The remainder of this

subsection will be devoted to proving the final sentence.

Theorem 1.1.1: Let G be a nilpotent group. Then the following are equivalent:

i) G is finitely generated,

ii) Ab(G) is finitely generated,

iii) G is f -nilpotent,

iv) Every subgroup of G is finitely generated.

Moreover, if these conditions are satisfied, then G is finitely presentable and Z[G] is a Noetherian ring.

Proof: The implications iv) =⇒ i) =⇒ ii) are trivial. The implication ii) =⇒ iii) follows, inductively,

from the epimorphism described on the previous page. It remains to prove iii) =⇒ iv). For this we start

with the fact that all subgroups of a finitely generated abelian group are finitely generated. Suppose that

the series:

1 = G0 → G1 → ...→ Gm = G

expresses G as an f -nilpotent group. Assume that every subgroup of Gk is finitely generated and consider

the short exact sequence:

1→ Gk → Gk+1 → Gk+1

Gk
→ 1

in which both Gk and the finitely generated abelian group Gk+1

Gk
satisfy Max, that is every subgroup of them

is finitely generated. Now if H is a subgroup of Gk+1, then the image of H in Gk+1

Gk
is finitely generated, as

well as H ∩ Gk. It follows that H is finitely generated, and so Gk+1 satisfies Max. It follows, inductively,

that G satisfies Max. �

For the remainder of this subsection, assume that G is a finitely generated nilpotent group. The fact that Z[G]

is Noetherian holds more generally for polycyclic groups, and we begin by showing that G is polycyclic.

Definition: A group G is called polycyclic if it has a subnormal series of the form:

1 = G0 → G1 → ...→ Gm = G

in which each quotient is a cyclic group.

By the structure theorem for finitely generated abelian groups, we know that finitely generated abelian groups

are polycyclic. The fact that G is polycyclic follows from this fact and an induction up a series expressing G

as an f -nilpotent group, using the next lemma.
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Lemma 1.1.2: If K and H are polycyclic in the short exact sequence of groups:

1→ K → G→ H → 1,

then G is polycyclic.

Proof: Let the subnormal series {Ki} and {Hi} express K and H as polycyclic groups. Then we define a

subnormal series on G by:

1 = K0 → K1 → ...→ Km = K = f−1(H0)→ f−1(H1)→ ...→ f−1(Hn) = G

The fact that this series expresses G as a polycyclic group follows from the third isomorphism theorem for

groups. �

The following lemma, and corollary, is due to P.Hall ([4], Theorem 1).

Lemma 1.1.3: Suppose that H is a normal subgroup of G such that G
H is either finite or infinite cyclic, and

that N is an H-submodule of the right G-module M such that M = NG. Then if N satifies Max-H, M

satisfies Max-G (that is all G-submodules of M are finitely generated as G-modules).

Proof: If G
H is finite, then let g0, ..., gn be elements of G representing each element of G

H . Then Ngi is an

H-submodule of M for each i and we have an epimorphism ⊕iNgi → M , since M = NG. If A is an H-

submodule of Ngi, then A
′

= {n ∈ N |ngi ∈ A} is an H-submodule of N and so is finitely generated. It follows

that Ngi satisfies Max-H and, therefore, so do ⊕iNgi and M . It follows that M satisfies Max-G.

If G
H
∼= Z, let g be an element of G representing 1 ∈ G

H . Then, since M = NG, every element m ∈ M is of

the form:

m =
∑
k∈Z

nkg
k

where nk ∈ N for all k, and all but finitely many of the nk are 0. Let A be a G-submodule of M . If p, q are

integers such that p < q, define the H-submodule Np,q of N by:

Np,q = {n ∈ N | there exists
∑
k nkg

k ∈ A such that ni = 0 if i < p or i > q and np = n}

Multiplication by g and its inverse shows that Np,q depends only on the value of q − p, so define Ni = N0,i

for i ∈ N. Then we have an ascending chain of H-submodules of N :

N1 ⊂ N2 ⊂ ...

Since N satisfies Max-H, this sequence must terminate after finitely many steps, say at Nj , j ∈ N.

4



For each i ≤ j, let {mi,0,mi,1, ...,mi,ti} be a set of elements of A representing a generating set for Ni. We

claim that this is a generating set for A as a G-module. Suppose that:

m =
∑
k∈Z

nkg
k

is an element of A. By subtracting elements of the form mj,tg
kh and multiplying by some gs, we may assume

that nk = 0 for k < 0 and k > j − 1. Then, by subtracting elements of the form mi,th, where i < j, we can

reduce all the way to 0. Hence, A is a finitely generated G-module, as desired. �

Corollary: If G is a polycyclic group, then Z[G] is a Noetherian ring.

Proof: This follows from the previous lemma, the definition of a polycyclic group and the observation that

if H ≤ G, then Z[H] is an H-submodule of Z[G], and Z[G] = Z[H]G. Also, Z[1] = Z is Noetherian. �

This shows that f -nilpotent groups have Noetherian group rings. The final task of Theorem 1.1.1 is to show

that they are also finitely presented. We know that finitely generated abelian groups are finitely presented,

and so the result will follow by inducting up a series expressing G as an f -nilpotent group, using the following

lemma:

Lemma 1.1.4: If K and H are finitely presented in a short exact sequence of groups:

1→ K → G→ H → 1

then G is also finitely presented.

Proof: Let H = < S | R > be a presentation of H, where S is a finite set and R ⊂ W (S, S−1) is a finite

subset of the words in S and their inverses. Similarly, let K = < P ,Q > be a finite presentation of K.

Then we have an epimorphism φ :< S ∪ P , > → G defined by sending elements of P to their images in G

and elements of S to a chosen preimage in G.

We will define three finite subsets of the kernel of φ. Firstly, we have

Q ⊂W (P, P−1) ⊂W ((S ∪ P ), (S ∪ P )−1).

For each r ∈ R, we have φ(r) ∈ K. Let wr be a word in P and P−1 representing φ(r)−1. Then we

define:

R
′

= {rwr | r ∈ R} ⊂W (S ∪ P, (S ∪ P )−1)

Now let (s, p) be a pair consisting of an element s ∈ S ∪ S−1 and an element p ∈ P ∪P−1. The image of the

conjugate ps is in K and so let w(s,p) be a word in P and P−1 representing φ(ps)−1. Define:

T = {psw(s,p) | s ∈ S ∪ S−1, p ∈ P ∪ P−1}.

We claim that G = < S ∪ P | Q ∪R′ ∪ T >.

5



Suppose that:

w1v1w2v2...wkvk

is a product of words in P and P−1 (the wi) and words in S and S−1 (the vi), which is in the kernel of φ.

Then v1...vk is a product of conjugates of elements of R. Therefore, by multiplying by conjugates of elements

of R
′
, we may assume that v1...vk = 1. In this case our word is of the form:

wv11 ...w
vk
k

where the wi are words in P and the vi are words in S. In fact we may assume that each vi is an element of

S ∪ S−1, and each wi is an element of P ∪ P−1. Then this word is of the form:

t(s1,p1)w
−1
(s1,p1)

...t(sk,pk)w
−1
(sk,pk)

where t(si,pi) is the element of T corresponding to (si, pi). Hence, by multiplying by conjugates of elements

of T , we may assume our original word is of the form w1, a word in P and P−1. This case is then dealt with

by multiplying by conjugates of elements of Q to reduce to 1. �

Corollary: If G is an f -nilpotent group, then G is finitely presentable. �

We finish this algebraic section by providing the proof of the implication ii) ⇐⇒ iii) of Theorem 2.0.1

which is purely algebraic. Firstly, we recall what we mean by a nilpotent space. Let X be a space and

let π = π1(X). We call a (left) module over the group ring Z[π] a π-module. So, in particular, πi(X) is

a π-module for i ≥ 2. By a π-group, we mean a group with a left action of π by homomorphisms. So all

π-modules are π-groups.

Definition: Let G be a π-group. Then G is a nilpotent π-group if there is a sequence of π-subgroups of G

of the form:

1 = G0 ⊂ G1 ⊂ ... ⊂ Gk = G

such that, for every i, Gi is normal in G, Gi+1

Gi
⊂ Z( GGi ) and π acts trivially on Gi+1

Gi
.

We let π act on itself via conjugation. We then have the following definition:

Definition: A nilpotent space X is a space for which πi(X) is a nilpotent π-group for i ≥ 1.

Observe that when i = 1, the definitions reduce to saying that π1(X) is a nilpotent group. We say that a

space is f -nilpotent if the quotients Gi+1

Gi
can be taken to be finitely generated as abelian groups, that is

πi(X) is an f -nilpotent π-group for all i.
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With our algebraic work in hand we can now prove:

Corollary 1.1.5: Let X be a nilpotent space. Then X is an f -nilpotent space iff πi(X) is finitely generated

for i ≥ 1.

Proof: If X is f -nilpotent, then πi(X) is an f -nilpotent group for all i ≥ 1. It follows that πi(X) is finitely

generated for i ≥ 1.

If πi(X) is finitely generated for all i ≥ 1, then we have two cases. If i ≥ 2 then the group πi(X) is abelian

and so all subgroups are finitely generated. In particular, any series expressing πi(X) as a nilpotent π-group

will have finitely generated quotients.

For the case i = 1, we have that π1(X) is a finitely generated nilpotent group and, hence, an f -nilpotent

group. A normal subgroup of π is (equivalent to) a π-subgroup, since π is acting on itself by conjugation.

Moreover, π acts trivially on the quotient groups of any series expressing π1(X) as an f -nilpotent group. It

follows that π1(X) is an f -nilpotent π-group, as desired. Taking both cases together, we have that X is an

f -nilpotent space. �
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1.2 A Theorem of Wall

In this subsection we will prove a theorem of Wall concerning when a space is weakly equivalent to a

CW complex with finite skeleta ([2], Theorem A). This will allow us to immediately prove the implication

iv) ⇐⇒ i) of Theorem 2.0.1, and the theorem will continue to be useful for the remaining implications.

Theorem 1.2.1: A space X is weakly equivalent to a CW complex with finite skeleta iff each of the following

conditions is satisfied:

i) π = π1(X) is finitely presented,

ii) for every map σ : K → X from a connected finite CW complex K which induces an isomorphism on

fundamental groups, π1(Fσ) is finitely generated as a π-module,

iii) for every n-connected (n ≥ 2) map σ : K → X from a finite CW complex K, πn(Fσ) is finitely generated

as a π-module.

Proof: ( ⇐= ) We’ll first show that if each of the conditions is satisfied, then X is weakly equivalent to

a CW complex with finite skeleta. Since π is finitely presented, we can construct, using the van Kampen

theorem, a finite CW complex K, with cells of dimension ≤ 2, equipped with a map σ : K → X inducing an

isomorphism on fundamental groups. We have the exact sequence of π-modules:

...→ π2(Fσ)→ π2(K)→ π2(X)→ π1(Fσ)→ 0

where π1(Fσ) is abelian since it is a quotient of π2(X), and the action of π is induced by π = π1(K) in

the underlying fiber sequence. By assumption, π1(Fσ) is finitely generated as a π-module, so choose finitely

many elements of π2(X) which correspond to generators of π1(Fσ) under the given surjection. Form a finite

CW complex K̂, and a map σ̂ : K̂ → X, by wedging a copy of S2 to K for each chosen element of π2(X),

and define the map σ̂ by sending each copy of S2 to a representative of the corresponding element of π2(X).

Given the exact sequence above, it is straightforward to see that the map σ̂ : K̂ → X is 2-connected.

Now suppose that we have constructed an n-connected map σ : K → X from a finite CW complex K, where

n ≥ 2. We will show that by adding finitely many (n+1)-cells to K, we can extend σ to an (n+1)-connected

map. In light of the previous paragraph, this will complete the first half of the proof. We have the exact

sequence:

...→ πn+1(K)→ πn+1(X)→ πn(Fσ)→ πn(K)→ πn(X)→ 0

By assumption, πn(Fσ) is finitely generated as a π-module. Therefore, the kernel of σ∗ : πn(K) → πn(X)

is finitely generated as a π-module. Form a finite CW complex K̂, and a map σ̂ : K̂ → X, by attaching

(n+ 1)-cells along representatives of a finite generating set for the kernel of σ∗, with the map σ̂ defined using

chosen nullhomotopies in X. Then we have a surjection πn(K) → πn(K̂), since πn(K̂,K) = 0, with kernel

equal to the kernel of σ∗. It follows that σ̂∗ : πn(K̂) → πn(X) is an isomorphism. We then have the exact

sequence:
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...→ πn+1(K̂)→ πn+1(X)→ πn(Fσ̂)→ 0

induced by σ̂. By assumption, πn(Fσ̂) is a finitely generated π-module. Therefore, we can wedge finitely

many copies of Sn+1 to K̂, in the exact same way as in the n = 1 case, to form a finite CW complex L and

an (n+ 1)-connected map L→ X, as desired.

( =⇒ ) For the converse, we may assume that X is a CW complex with finite skeleta, for example by

repeatedly using the fill-in lemma ([1], Lemma 1.2.3). By the van Kampen theorem, it is clear that π is

finitely presented. We will first show that if (Y,B) is an n-connected CW-pair (n ≥ 1) such that Y has finite

skeleta, then there exists a weak equivalence of CW pairs (Y,B) → (Ŷ , B̂) such that Ŷ has finite (n + 1)-

skeleton and B̂ contains the n-skeleton of Ŷ . By enlarging the subcomplex B by attaching 1-cells between a

vertex of B and a vertex of Y \B, we may as well assume that B contains every vertex of Y .

For each 1-cell eα of Y which is not in B, let fα : ∂∆1 → B be its attaching map. Since (Y,K) is connected,

fα is nullhomotopic. This nullhomotopy can be expressed as a map gα : Λ2
0 → B, which restricts to fα on

the boundary of the 0th face. We can extend gα to a map hα : ∂∆2 → Y by letting the restriction of hα

to the 0th face be the inclusion of the cell eα. Since (Y,B) is 1-connected, we can modify gα so that hα is

nullhomotopic. Define B̂1 to be the pushout:

tαΛ2
0 B

tα∆2 B̂1

tαgα

Then we have an inclusion j : Y(1) → B̂1 and we can use the fact that hα is nullhomotopic for all α to define

a map r : B̂1 → Y such that rj is the inclusion of the 1-skeleton of Y . It is also clear that the inclusion

B → B̂1 is a weak equivalence.

Now we repeat this process to construct a CW pair (B̂n, B) equipped with an inclusion j : Y(n) → B̂n, and

a map r : B̂n → Y such that rj is the inclusion of the n-skeleton and the inclusion B → B̂n is a weak

equivalence. We define B̂ = B̂n. Let Z be the CW complex obtained by attaching the remaining cells of Y

(of dimension greater than n) onto the subcomplex Y(n) of B̂. Then Z contains Y as a subcomplex and we

can extend the maps r and j in the obvious way and we have rj = 1. It is clear that r? : π?(Z) → π?(Y )

is a surjection for all ? and is an isomorphism for ? ≤ n − 1. We claim that rn is also an isomorphism.

Suppose that φ : Sn → Z becomes nullhomotopic after applying r. By the cellular approximation theorem,

φ is homotopic to a map which factors through Z(n) ⊂ B̂. Since the inclusion B → B̂ is a weak equivalence,

we may even assume φ factors through B. Now the restriction of r to B is the inclusion of B into Y , and

so φ is nullhomotopic in Y . This means that φ is nullhomotopic in Z, since Z contains Y as a subcomplex.

It follows that rn is injective, and, hence, an isomorphism as desired. Finally, we construct Ŷ by attaching

cells of dimension ≥ n+ 2 to Z to extend r to a weak equivalence. Then the inclusion (Y,B)→ (Ŷ , B̂) is a
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weak equivalence where Ŷ has finite (n+ 1)-skeleton and Ŷ(n) ⊂ B̂ as desired.

To complete the proof, let σ : K → X be a map from a finite CW complex K, as in condition ii) or iii). Then

we may as well assume that σ is a cellular map and then replace σ by the inclusion i : K →Mσ, where Mσ

is a CW complex with finite skeleta and K is a subcomplex. By assumption, i is n-connected with n ≥ 1

and so we may consider a CW pair (Y,B) in which i corresponds to the inclusion B → Y , B contains Y(n)

and Y has finite (n+ 1)-skeleton. We have:

πn(Fσ) = πn+1(Y,B) = πn+1(Ỹ , B̃) = Hn+1(Ỹ , B̃),

where the final equality follows from the relative Hurewicz theorem and the middle equality follows, when

n = 1, from the fact that σ induces an isomorphism on fundamental groups. Considering the cellular chain

complex of (Ỹ , B̃), we see that it is zero at degree n and is a finitely generated π-module at degree n+ 1. It

follows that the quotient group Hn+1(Ỹ , B̃) is a finitely generated π-module as desired. �

The following corollary is useful for applications:

Corollary 1.2.2: If X is a space such that π1(X) is finitely presented, Z[π] is a Noetherian ring and Hi(X̃)

is a finitely generated π-module for all i, then X is weakly equivalent to a CW complex with finite skeleta.

Proof: Suppose that σ : K → X is an n-connected map (n ≥ 1) from a finite CW complex K which

induces an isomorphism on fundamental groups. Then we have πi(Fσ) ∼= Hi+1(X̃, K̃). Consider the exact

sequence:

...→ Hi+1(K̃)→ Hi+1(X̃)→ Hi+1(X̃, K̃)→ Hi(K̃)→ Hi(X̃)→ 0

Hi+1(X̃) is a finitely generated π-module by assumption and Hi(K̃) is too since K is a finite cell complex.

Since Z[π] is Noetherian, any submodule of Hi(K̃) is also a finitely generated π-module. It follows that

Hi+1(X̃, K̃) is a finitely generated π-module, which means that X satisfies the conditions i) - iii) of the

theorem. �

Corollary 1.2.3: If A is a finitely generated abelian group, then K(A, 1) is weakly equivalent to a CW

complex with finite skeleta.

�
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Finally, for this subsection, we prove the implication iv) ⇐⇒ i) of Theorem 2.0.1. For the proof, we will

need to use the fact that, if X is a nilpotent space, then Hi(X̃) is a nilpotent π-module for all i.

Corollary 1.2.4: If X is a nilpotent space, then X is weakly equivalent to a CW complex with finite skeleta

iff π1(X) and Hi(X̃) are finitely generated for all i.

Proof: If X is a nilpotent space which is weakly equivalent to a finite CW complex, then π is finitely

presented, and, hence, a finitely generated nilpotent group. Moreover, Hi(X̃) is finitely generated as a π-

module. Since Z[π] is Noetherian, it follows that all quotients of a series expressing Hi(X̃) as a nilpotent

π-module are finitely generated π-modules on which π acts trivially. This means they are finitely generated

abelian groups. Inducting up the series, we see that this implies that Hi(X̃) is also a finitely generated

abelian group, as desired.

Now assume that π1(X) and Hi(X̃) are finitely generated. Then π is f -nilpotent and, therefore, π is finitely

presented and Z[π] is Noetherian. Since Hi(X̃) is also finitely generated viewed as a π-module, Corollary

2.2.2 implies that X is weakly equivalent to a CW complex with finite skeleta. �
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1.3 A Theorem of Serre

In this subsection we will prove a classical result of Serre - that for simply connected spaces X, all homotopy

groups of X are finitely generated iff all homology groups of X are. Following [1], the strategy of proof will

be to replace the simply connected space X by a Postnikov tower and induct up it using the Serre spectral

sequence. In the previous subsection, we showed that if A is a finitely generated abelian group, then K(A, 1) is

weakly equivalent to a CW complex with finite skeleta, and so, in particular, has finitely generated homology

groups. The next lemma allows us to extend this result to K(A,n) for n > 1:

Lemma 1.3.1: If X is simply connected, then Hi(X) is finitely generated for all i iff Hi(ΩX) is finitely

generated for all i.

Proof: Consider the Serre spectral sequence for the fibration:

ΩX → PX → X

where the local coefficient is trivial since X is simply connected. Since PX is contractible, the only non-zero

term of the E∞-page is E∞0,0
∼= Z. We have exact sequences:

Err,q−r+1 → Er0,q → Er+1
0,q → 0

Suppose that Hi(X) is finitely generated for all i, and that Hi(ΩX) is finitely generated for i < q. Then, for

r ≥ 2:

E2
r,q−r+1 = Hr(X,Hq−r+1(ΩX))

is finitely generated, since if A,B are finitely generated abelian groups, then Tor1(A,B) is finitely generated

since it can be expressed as a homology group of a chain complex of finitely generated abelian groups. It

follows that Err,q−r+1 is finitely generated, and by induction using the exact sequence above, that E2
0,q =

Hq(ΩX) is finitely generated. Therefore, by induction, if Hi(X) is finitely generated for all i, then Hi(ΩX)

is finitely generated for all i. The proof of the reverse implication is entirely analogous. �

Corollary 1.3.2: If A is a finitely generated abelian group and n > 1, then K(A,n) is weakly equivalent to

a CW complex with finite skeleta.

Proof: Inductively, Lemma 2.3.1 implies that Hi(K(A,n)) is finitely generated for all i, so the result follows

from Corollary 2.2.2. �
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Theorem 1.3.3: If X is simply connected, then πi(X) is finitely generated for all i iff Hi(X) is finitely

generated for all i.

Proof: Since X is simple, we can assume that X is the limit of a Postnikov tower:

...→ Xn+1 → Xn → ...→ X1 = ?

Therefore, we have fibrations:

Xn+1 → Xn → K(πn+1(X), n+ 2)

If Hi(Xn) is finitely generated for all i, then inspection of the argument given in Lemma 2.3.1 shows that

we only used the fact that the E∞ page was finitely generated. Therefore, the argument can be generalised

to show that Hi(Xn+1) is finitely generated for all i iff Hi(K(πn+1(X), n+ 2)) is finitely generated for all i.

Therefore, if πi(X) is finitely generated for all i, an inductive argument using the fact that Hi(K(πn+1(X), n+

2)) is finitely generated for all i and n, shows that Hi(Xn) is finitely generated for all i and n. It follows that

Hi(X) is finitely generated for all i, since the groups Hi(Xn) eventually stabilise at Hi(X) for large n.

Now suppose that Hi(X) is finitely generated for all i. The map X → Xn is an (n + 1)-equivalence, since

πn+1(Xn) = 0, and so Hi(X) → Hi(Xn) is an isomorphism for i ≤ n and a surjection when i = n + 1. It

follows that Hi(Xn) is finitely generated whenever i ≤ n + 1. Suppose that we have proved that πi(X) is

finitely generated for i ≤ n. Then inductively, similarly to our previous work, we can show that Hj(Xi) is

finitely generated for i ≤ n and all j. Consider the Serre spectral sequence for the fibration:

Xn+1 → Xn → K(πn+1(X), n+ 2)

Then E∞p,q is finitely generated for all p and q, and Er0,q is finitely generated whenever q ≤ n + 2. We also

have E2
n+2,0 = πn+1(X). We have exact sequences:

0→ Er+1
n+2,0 → Ern+2,0 → Ern−r+2,r−1

When r = n + 2, Er+1
n+2,0 = E∞n+2,0 and Ern−r+2,r−1 = En+2

0,n+1 and so both of these are finitely generated. It

follows that En+2
n+2,0 is finitely generated. For 2 ≤ r < n + 2, Ern−r−2,r−1 = 0 and so, inductively, it follows

that E2
n+2,0 = πn+1(X) is finitely generated, as desired. It follows, again inductively, that πi(X) is finitely

generated for all i. �
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We can now prove another implication of Theorem 2.0.1:

Corollary 1.3.4: If X is a nilpotent space, then πi(X) finitely generated for each i ≥ 1 iff π1(X) and, for

i ≥ 2, Hi(X̃) are finitely generated.

Proof: If πi(X) is finitely generated for i ≥ 1, then so is πi(X̃) and so Theorem 2.3.3 applies to show that

Hi(X̃) is finitely generated for all i. On the other hand, if π1(X) and, for i ≥ 2, Hi(X̃) are finitely generated,

then Theorem 2.3.3 tells us that πi(X̃) (= πi(X)) is finitely generated for i ≥ 2 and so all homotopy groups

of X are finitely generated. �
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1.4 The final implication

We have already shown that the first four conditions of Theorem 2.0.1 are equivalent and that i) =⇒ v).

Therefore, to complete the proof of Theorem 2.0.1 we just need to show that v) implies any one of i)− iv).

We will show that v) =⇒ iv). For the proof, we will want to assume that the nilpotent space X is, in fact,

the limit of a Postnikov A-tower and to define the ’universal cover’ of X to be the fiber of the fibration:

X̃ → X → K(π1(X), 1)

induced by the tower. As justification for doing this, consider a fibrant cofibrant approximation X̂ of X in

the Quillen model structure on topological spaces, so that there is a weak equivalence between the fiber of the

composite fibration X̂ → K(π1(X), 1) and X̃. Finally, for the justification, note there is a weak equivalence

from the universal cover of X̂ to the fiber of this composite fibration. Recall also that, if X is nilpotent, then

π1(X) acts nilpotently on Hi(X̃), since this fact plays a key role in the following proof:

Theorem 1.4.1: Let X be a nilpotent space. If Hi(X) is finitely generated for each i ≥ 1, then π1(X) and,

for i ≥ 2, Hi(X̃) are finitely generated.

Proof: By the Hurewicz theorem, the abelianisation of the nilpotent group π = π1(X) is finitely generated,

and so it follows that π itself is finitely generated by our algebraic result, Theorem 2.1.1. Consider the Serre

spectral sequence of the fibration:

X̃ → X → K(π, 1)

Since π is finitely presented and Z[π] is Noetherian, it follows that K(π, 1) is weakly equivalent to a CW

complex with finite skeleta. The E∞ page is finitely generated by assumption, and we have that E2
p,0 =

Hp(K(π, 1);H0(X̃)) = Hp(K(π, 1)) is finitely generated. Suppose that we have shown Hi(X̃) is finitely

generated for i ≤ n. We have exact sequences:

Err,n−r+2 → Er0,n+1 → Er+1
0,n+1 → 0

Now, E2
r,n−r+2 = Hr(K(π, 1);Hn−r+2(X̃)) and, if r ≥ 2, this is finitely generated since it is the homology of a

complex of finitely generated abelian groups, namely the cellular chain complex, with finitely generated local

coefficients, of a CW complex with finite skeleta. It follows, inductively, that E2
0,n+1 is finitely generated.

We have:

E2
0,n+1 = H0(K(π, 1);Hn+1(X̃)) = Hn+1(X̃)/π

Let:

1 = G0 → ...→ Gk = Hn+1(X̃)

be a sequence of π-submodules of Hn+1(X̃) expressing Hn+1(X̃) as a nilpotent π-group.
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Consider the exact sequence of homology groups with local coefficients:

...→ H1(K(π, 1); Gi+1

Gi
)→ H0(K(π, 1);Gi)→ H0(K(π, 1);Gi+1)→ H0(K(π, 1); Gi+1

Gi
)→ 0

When i = k − 1, the end surjection implies that H0(K(π, 1); Gk
Gk−1

) = Gk
Gk−1

is finitely generated. This

implies, along with the fact that K(π, 1) is weakly equivalent to a CW complex with finite skeleta, that

H1(K(π, 1); Gk
Gk−1

) is finitely generated. It follows that H0(K(π, 1);Gk−1) is finitely generated. Continuing

in this fashion down the series express Gk as a nilpotent π-group, we find that H0(K(π, 1); Gi+1

Gi
) = Gi+1

Gi
is

finitely generated for all i. It follows that Hn+1(X̃) is f -nilpotent and, hence, finitely generated. Inductively,

it now follows that Hi(X̃) is finitely generated for all i, as desired. �
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