A CRITERION FOR A HUREWICZ COFIBRATION TO BE A QUILLEN
COFIBRATION

ANDREW RONAN

In this paper, we prove that h-cofibrations between g-cofibrant spaces are g-cofibrations and discuss a number
of applications. In fact, since our non-equivariant proofs generalise readily to the equivariant context, we
work throughout with the C-model structure on G-spaces. Here C is a set of subgroups of G which we take
to be closed under conjugacy, and the C-model structure is that of [Sch18, Proposition B.7]. Recall that the
C-model structure is a topological model structure cofibrantly generated by:

I={G/H xS" ' - G/HxD"|n>0,H €C},
J={G/H xD" - G/H x D" xIIn>0,H €C}

Moreover, the C-fibrations (resp. C-equivalences) are the maps p such that p is a ¢-fibration (resp. ¢-
equivalence) for every H € C. Note that our assumption that C is closed under conjugacy results in no loss
of generality, and is convenient for some of the proofs below. For example, if H is a subgroup of G and we
define CN H = {K N H|K € C}, we then have:

Lemma 1: If X is C-cofibrant as a G-space, then X is (C N H)-cofibrant as an H-space.

Hurewicz cofibrations between g-cofibrant spaces are g-cofibrations
We now move onto the proof of our main theorem. The key point is the following generalisation of [MP12|

Proposition 17.1.4], which admits the same proof:

Lemma 2: Leti: A — B be an h-cofibration and p: X — Y be a map which has the RLP wrt B — B x I.
Suppose that we are given a commutative square:

A—"- X
l l”
B ——Y

w

and a map o : B — X such that poi = pv, oi >~ v over Y and poc ~ w rel A. Then o is homotopic to some
T with 71 = v and pT = w.

Proof. Since i is an h-cofibration, ¢ is homotopic to some o with ¢'i = v in such a way that the composite
homotopy pol ~ w is still relative to A. So we have reduced to the case where oi = v. Let (H, \) represent
(B, A) as an NDR-pair. Let K : B x I — Y be a homotopy between po and w, relative to A and normalised
so that K(b,t) = K(b,1) for t > A(b). Since p has the RLP wrt B — B x I, we can lift this homotopy to

K : B x I — X starting at o. If we define 6(b) = K (b, A(b)) we solve the lifting problem as desired. O
Lemma 3: An h-cofibration between C-cofibrant spaces is a C-cofibration.

Proof. Let i : A — B be an h-cofibration between C-cofibrant spaces. We can factor ¢ as a C-cofibration
followed by a C-acyclic C-fibration between C-cofibrant objects, so by the retract argument it suffices to show
that ¢ has the LLP wrt C-acyclic C-fibrations between C-cofibrant objects.

If p: X — Y is a C-acyclic C-fibration between C-cofibrant objects, then there exists s : Y — X such that
ps =1 and sp >~ 1 over Y. Since B is C-cofibrant p has the RLP wrt B — B x I. Therefore, we can solve a
lifting problem as in Lemma [2| with the initial up to homotopy lift o as sw. O
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Example 4: Suppose that H € C. If U is an equivariant open subspace of G/H x D™, theni:U N (G/H x
OD™) = UN(G/H x D™) is the inclusion of the boundary of a smooth G-manifold and so is an h-cofibration
between C-cofibrant spaces by the equivariant collar neighbourhood theorem, [Kan07, Theorem 3.5]. Therefore,
Lemma[3 tells us that i is a C-cofibration.

Lemma 5: Ifi: A — B is a C-cofibration and U C B is an equivariant open subspace, theni: ANU — U
is a C-cofibration.

Proof. Firstly, i is a retract of a relative C-cell complex, j : A — C, as shown below:

T
£

SR
SR

— C—
If welet V. =r=Y(U), theni: ANU — U is a retract of j : ANV — V. So we have reduced to the case
where i is a relative C-cell complex, which we now assume.

We can express i as a transfinite composite of maps Ay — Axi1, each of which is a pushout of a map of
the form G/H x S"~! — G/H x D", with H € C. By |[Ron23, Lemma 6.2.3] and Lemma the map
i: ANU — U can be expressed as a transfinite composite of the maps Ay NU — Ay11 NU, each of which is
a pushout of a map of the form (G/H x S" 1)Na~Y(U) = (G/H x D")Na~1(U), where « is the inclusion
of the cell into B. By Example [l A\ NU — Ax;1 NU is therefore a C-cofibration, and, hence, so is the
transfinite composite i : ANU — U. O

Corollary 6: An equivariant open subspace of a C-cofibrant G-space is C-cofibrant.
Combining Lemma [3] and Corollary [6] we can rephrase Lemma [3] as follows:

Theorem 7: Ifi : A — B is an h-cofibration and B is C-cofibrant, then A is C-cofibrant and i is a C-
cofibration.

Proof. 1If (H, \) represents (B, A) as a G-NDR-pair, then A is a retract of A=1([0, 1)) which is C-cofibrant by
Corollary [6] O

Example 8: Let G = X, and let C be the set of subgroups of G, each isomorphic to a product of symmetric
groups X, X ... X ¥, , corresponding to partitions of {1,...,n} into sets of size ny,...,n;. Leti: S*=1 — DK be
the boundary inclusion. If we consider the iterated pushout product map j : S¥=1 x (DF)"~1u...u(DF)"~1 x
Sk=1 .= Q, (i) — (D*)", then j is an h-cofibration by [May7%, Lemma A.J], and the domain and codomain
are C-cofibrant since they are G-manifolds, hence G-CW complexes, [IlI83, Corollary 7.2], with the correct
isotropy groups. Therefore, Lemma 77 tells us that j is a C-cofibration.

We then have the following application to the theory of symmetrizable cofibrations, which is a slight gener-
alisation of [Sch18| Proposition 2.1.12]:

Lemma 9: Let j : A — B be a symmetrizable (acyclic) cofibration in a tensored and cotensored closed
symmetric monoidal topological model category. Then for every k > 0, the pushout product map:

jOi: Ax D¥ Uy g1 B x S¥~1 — B x DF
is a symmetrizable (acyclic) cofibration.

Proof. For any n > 1, we want to show that k := (j1i)7"/%,, is an (acyclic) cofibration. Equivalently, we
want to show that k has the X,,-equivariant LLP with respect to (acyclic) fibrations p : X — Y, where 3, acts
trivially on X and Y. Using the tensor-cotensor adjunction, it suffices to show that i7" has the equivariant
LLP wrt ijD". In Exampl

C. So it suffices to show that p™7 s a C-acyclic C-fibration. If H € C, this amounts to showing ijD"/ H g
a g-acyclic g-fibration. This follows from the fact that the model structure is topological and monoidal, j is
a symmetrizable cofibration and either p is acyclic or j is a symmetrizable acyclic cofibration. O

we saw that i7" is a C-cofibration, with respect to the specified set of subgroups
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Local gluing results for fibrations and cofibrations

In this subsection, we explain how Theorem [7] allows us to prove gluing results for C-fibrations and C-
cofibrations analogous to Dold’s gluing results for h-fibrations and h-cofibrations, [Dol63, Theorem 4.8] and
[Dol68l Satz 2]. First recall that:

Definition 10: A G-numerable open cover {U;},cs of a G-space, B, is a locally finite open cover of B such
that for every j € J there exists an equivariant map A; : B — I with U; = )\j_l((O, 1]).

The next lemma is central to the proofs of all four gluing theorems:

Lemma 11: Consider a lifting problem of G-spaces as below:

ALX

0 P

BT>Y

Suppose that there exists a G-numerable open cover {U;};cr of B such that if i € I and J C I, then there
exists a solution to the induced lifting problem:

YU N (UjesU;)) — X

i g

U;N (Uje,]Uj) 411) Y

and given two solutions V1,19 of the induced lifting problem there exists a G-homotopy from 11 to 1o which
1s relative to both p and 1.

Then there is a solution to the original lifting problem [1]

Proof. Let:
S ={(AV)|AC L : Ugeala = X, ptp = g,2bi = f}.

We define a partial order on S by:
(Aa 1/]1) < (Bv '(/}2)

iff AC B and 91 =12 on UgeaUs \ Ugep\aUs.

We may as well assume that B is non-empty, in which case taking J = {i} in the condition of the lemma
shows that S is non-empty. Since {U;} is a locally finite cover, every chain in S has an upper bound. Hence,
by Zorn’s lemma, S contains a maximal element, say (A,1). If A # I, there exists some § € I\ A. By
the condition in the lemma, there exists some ({8},12) € S. By the uniqueness up to relative homotopy
condition, there exists a G-homotopy K : (Ug N (UacaUq)) x I — X between ¢; and 19, relative to p and 1.
Pick G-maps A1, A2 : Ug U (UaeaUs) — I such that Une aUs = A7((0,1]), Us = A5 2((0,1]) and Ay 4+ Ag = 1.
Define:

¢1 (’LL) if A >
Y(u) = § Ya(u) if A <
K(u,2 —2X;) otherwise

L ]

Then (AU {8},¢) € S with (4,¢1) < (AU {8},%), a contradiction. So A = I and ¢ is a solution to the
original lifting problem. g

As an immediate consequence, we have the following gluing result for C-cofibrations:

Theorem 12: Ifi: A — B is a map of G-spaces and there is a G-numerable open cover U of B such that
for every U e U, i|anu : ANU — U is a C-cofibration, then i is a C-cofibration.
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Proof. We consider a lifting problem for i with respect to a C-acyclic C-fibration, p : X — Y. The G-
numerable open cover U ensures the existence of local lifts as in Lemma [T} Uniqueness follows from Lemma

and the fact that the C-model structure is topological, [Sch18, Proposition B.5], so solutions to such lifting
problems are unique up to relative homotopy. Therefore, the result follows from Lemma O

The corresponding gluing theorem for h-cofibrations is [Dol68| Satz 2], whose proof uses the fact that the
restriction of an h-cofibration to a numerable open subspace is an h-cofibration, [Dol68| Satz 1], in place of
Lemma

Theorem 13: Suppose that {U;}jcs is a G-numerable open cover of B. If f : A — B is a map such that
f: f7Y(U;) — Uj is an hG-cofibration for all j € J, then f: A — B is an hG-cofibration.

As for h-fibrations, [Dol63, Theorem 4.8], with a little more work we can use Lemma to prove a gluing
result for C-fibrations:

Theorem 14: If p : X — Y is a map and there exists a G-numerable open cover {U;}icr of Y such that
p:p Y (U;) — U; is a C-fibration for all i € I, then p is a C-fibration.

Proof. Consider a lifting problem:

5

A
|
X

where A is C-cofibrant and ¢ : A — A x I is the inclusion of A x {0}.

*<<T><i

AIT>

Choose functions, A; : Y — I, for every ¢ € I, such that U; = )\;1((07 1]) and > ,.; A = 1. Suppose that
S = (dgy .-y in—1) is a finite sequence of elements of I, so, in particular, the members of the sequence need
not be distinct. Define a function us : A — I by:

(2) ps(a) = max{ min < inf Ay, (H(a,t))) -n Z pr,0}

J€{0....,n—=1} \ te[4, 141 T Tl<n

Then {Vs := ug'((0,1])} is a G-numerable open cover of A, indexed over finite sequences of elements of 1.
Therefore, {Vg x I} is a G-numerable open cover of A x I. Moreover, by inspection of equation , we see
that H(Vs x [%, %]) C U, for every j. It follows that the existence condition of Lemma [11]is satisfied,
since Vg is C-cofibrant by Corollary [6] and so we can construct a lift inductively on these intervals. Similarly,
we can construct relative homotopies between any two lifts inductively, and so the uniqueness condition of
Lemma [T1] is also satisfied, which gives the result. g

Other Examples

The next result is the equivariant analogue of [DE72, Corollary II1.2].

Lemma 15: Suppose that C is closed under conjugacy and intersections. If X is C-cofibrant, then A : X —
X x X is a C-cofibration.

Proof. The condition that C is closed under conjugacy and intersections ensures that X x X is also C-cofibrant.
Since any C-cofibrant G-space is a retract of a C-cell complex, by Lemma [3] it suffices to show that if X is
a G-cell complex then A : X — X x X is an h-cofibration. To this end, assume that A : Y — Y x Y is
an h-cofibration and X is obtained from Y by attaching a single cell along o : G/H x S*~! — Y. We will
show that if (H, \) represents (Y X Y,Y) an NDR-pair, then there is an NDR pair (K, u) for (X x X, X)
such that Klyxyxr = H and plyxy = A. Firstly, the composite Y - YV xY -V x X Uyxy X x Y is an
h-cofibration, represented by an NDR pair that extends (H, A), where note Y x Y - Y x X Uyxy X XY is
an h-cofibration by [Str72, Lemma 5]. We then consider the map between pushouts:
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G/H x D" +——— G/H x S"7! Y

J» l= |

G/H x G/H x D" x D" +—— G/H x G/H x 0D?® —— Y x X Uyxy X XY

We’ve seen that « is an h-cofibration. The map between pushouts is A : X — X x X and to show this is an
h-cofibration it suffices to show the pushout-product map, ¢, below is an h-cofibration:

¢:G/H x D" Ugyysn— G/H x G/H x dD*" — G/H x G/H x D" x D"

Let U 2 G/H x 9D™ x [0,1) be a numerable boundary collar in G/H x D™. Then consider the restriction
of ¢ to U x U, which can be identified with:

G/H x9dD" x[0,1)UG/H xG/H x dD"™ x 9D" x 9([0,1) x[0,1)) = G/H x G/H x D" x D™ x [0,1) x [0, 1)

Let L € [0,1) x [0,1) be the union of the diagonal and the boundaries, so L consists of three straight lines.
The map above is the composite of the pushout product of A : G/H x D™ — G/H x G/H x 0D™ x 9D"
and 9([0,1] x [0,1)) — L with the map:

G/H x G/H x D™ x D" x L - G/H x G/H x 9D" x 9D"™ x [0,1) x [0,1)

and is therefore an h-cofibration as desired. If V' is the complement in G/H x D" of G/H x9D™ x[0,1/2] C U,
then V is also numerable and the restriction of ¢ to each of U x U, V x G/H x D™ and G/H x D" x V is
an h-cofibration. Therefore, ¢ is an h-cofibration by |[Dol68, Satz 2], and, therefore, A : X — X x X is an
h-cofibration, since it is the composite of a pushout of o with a pushout of ¢. Etc... 0

As in [DET72|, we make the following definition:

Definition 16: We call a G-space, X, G-equivariantly locally equiconnected (or G-LEC) if A : X — X x X
is an hG-cofibration.

The next lemma is the equivariant analogue of [DE72, Theorem II.3]:

Lemma 17: Let X be G-LEC and suppose that © € X has isotropy group H. Then there exists an H -
equivariant open neighbourhood U of x such that my, 7o : U x U — X are H-homotopic. Here, w; denotes the
projection onto the ith factor followed by the inclusion into X.

Proof. Let (H,\) represent the inclusion of the diagonal (X x X,A) as a G-NDR pair. Identify X with
{x} x X and let U = A71([0,1)) N ({z} x X). Consider H : {x} x U x I — X x X. Then moH defines
an H-homotopy from the inclusion ¢ : U — X to some map f. Moreover, m1 H defines an H-homotopy
from f to the constant map to x. If we now consider 71,72 : U x U — X, we see that 7 is the composite
UxU— X xU ™5 X, which is H-homotopic to the constant map to z. Similarly, w5 is H-homotopic to
the constant map to x, so m; and my are H-homotopic. O

Lemma 18: Let X be C-cofibrant and suppose that x € X has isotropy group H. Then there exists an H -
equivariant open neighbourhood U of x such that mi,m9 : U x U — X are H-homotopic via an H-homotopy
which is constant on A.

Proof. By Lemma and Lemma we know that m; and w5 are H-homotopic, say via an H-homotopy
L:UxUxI— X. Definel': A x I = X to be the restriction of L to A x I. Let I'"! denote the inverse
homotopy from 7 to m;. Define K to be composite (via concatenation) homotopy of L and I'~!mry:

-1
UxUxI 2 UxI2AxI L1 X

Then the restriction of K to A x I is the composite of I and I' ™!, and K is an H-homotopy from m; to .
The composite of I" and I'"! is itself H-homotopic, say via o : A x I x I — X, to the constant homotopy on
m1|a, and « can be made relative to A x {0,1} x I. We can then define a lifting problem:
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KuaUcnst({m,m2})

UxUxIx{0JUAXIXxTUUxUx{0,1} x1TI X
*

UxUx1IxI

Alift K : U xUx1IxI— X exists since U is (CN H)-cofibrant, by Corollary@ and Lemma and, therefore,
H-LEC by Lemma This implies the left hand vertical map is an hH-acyclic hH-cofibration. Restricting
K to U x U x I x {1} gives the desired H-homotopy. O

We will use the following consequence of [Las82, Lemma 2.8], which was noted in [BJ15, Lemma 6.1]:
Lemma 19: Ifp: E — B is an hH-fibration, then 1 Xgp: G xg E — G xXg B is an hG-fibration.

Proof. Consider a lifting problem of G-spaces as in the right hand square below:

GXHVQ = X ! GXHE

| | |

Gxg(VoxI) —4> XxI —4—GxuB

Then X x I = G xgx o~ }(B) and so [Las82, Lemma 2.8] tells us that there is an H-homeomorphism 1) :
Vo x I =V, where V =a"}(B), Vo =V N (X x {0}) and Ylvyx {0y is the inclusion of V4 into V. Note that
G xg Vo 2 X. The H-homeomorphism, ¢, induces a G-homeomorphism G xp (Vo x I) = X x I, as in the
diagram above, which restricts at 0 € I to a homeomorphism onto X x {0}. So to solve the lifting problem
of the right hand square, it suffices to solve the adjoint lifting problem of H-spaces:

V()#GXHE

| |

Vo x 1 T"/)> GxygB
Since V.= a"Y(B), atp : Vo x I — G xg B factors through B, and f : Vo — G xg E factors through E.
Since p is an hH-fibration, it follows that the lifting problem can be solved. O

A version of the following theorem was first proved in an equivariant context by Gevorgyan and Jimenez
in |GJ19, Theorem 6], using the ¢G-model structure and under the assumption that both E and B are G-
CW complexes. The proof below corrects a minor gap in that proof, since it is not necessarily true that a
G-CW complex, X, can be covered by G-equivariant open subspaces which are non-equivariantly contractible
in X.

Theorem 20: Suppose that C is closed under conjugacy and intersections. If p : E — B is a C-fibration
between C-cofibrant spaces, then p is an hG-fibration.

Proof. Let (H, \) represent (B x B, Apg) as a G-NDR pair. As in Lemma if b € B has isotropy group H
there is an H-equivariant open neighbourhood U of b and an H-homotopy K : U x U x I — B between
and 7y such that K(u,v,t) = K(u,v,1) for all t > A(u,v). Note that H € C since there exists an inclusion
of B into a C-cell complex. Since p: E — B is a (C N H)-fibration, C is closed under intersections and both
U and p~(U) are (C N H)-cofibrant, we can solve the lifting problem:

T2

Uxp{(U) — =2 F
| !

—1
pr (U) x1 Ko(1xpx1)

to define a slicing function K : U x p~1(U) x I — E. We now show that p : p~'(U) — U is an hH-fibration.
Indeed, given a lifting problem of H-spaces:
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x — o p )

| J

XX[TU

a lift can be defined via L(z,t) = K(L(xz,t), f(z), M(L(z,t), pf (x))).

Since B is completely regular, b also has a G-equivariant open neighbourhood G-homeomorphic to G x g S,
where S is an H-equivariant subspace of B containing b, by |[Bre72, Theorem 5.4]. Replacing S by SNU if
necessary, we may as well assume S C U. In this case, it follows from the above that p : p~1(S) — S is an
hH-fibration and so p : G xg p~1(S) — G x g S is an hG-fibration by Lemma It follows that for every
b € B there is a G-equivariant neighbourhood, V', of b for which p : p~1(V) — V is an hG-fibration. Since B
is paracompact, it follows that p is an hG-fibration. g

Appendix of point set topology

Lemma 21: Let I be a filtered category and let D : I — U be a functor which takes maps in I to closed
inclusions. Let A := colimD and f : X — A be a map. Define Y (i) to be the pullback of D(i) — A along f.
Then the canonical map colimY — X is a homeomorphism.

Proof. We can express filtered colimits of closed inclusions, such as A, as quotients of the disjoint union of
the colimiting subspaces, U;e;D(i) — A, [Str09, Lemma 3.3]. We have a pullback:

UierYi — X

Ll

uieIDi — A
Since the pullback of a quotient map is a quotient map, [Str09, Propostion 2.36], we obtain the result. O

Lemma 22: The following properties of a space X are closed under retracts: being i) Hausdor(f, ii) para-
compact, iii) completely regqular.

Proof. Suppose that we have maps i : A — X,r : X — A with ri = 1. If X is Hausdorff, let a and b be
distinct points in A. Then there exists disjoint open sets U and V in X separating i(a) and i(b). So i~1(U)
and i1 (V) are disjoint and separate a and b. So A is Hausdorff.

If X is paracompact and {U; };cs is an open cover of A, then {r~!(U;)} is an open cover of X which admits a
locally finite open refinement {V;};c;. Then, for each j i ~1(V;) is contained within i ~'r~1(U;) = U; for some
i, so {i~1(V;)} is an open refinement of {U;}. Moreover, for every a € A there is an open neighbourhood, W,
of i(a) which intersects only finitely many of the V;. Then i~!(W) is an open neighbourhood of a, intersecting
only finitely many of the i=*(V;). So A is paracompact.

Next suppose that X is completely regular. Let a € A and C be a closed subspace of A not containing a. Then
r~1(C) is a closed subspace of X not containing i(a). So there exists a continuous function A : X — [0, 1]
such that Ai(a) = 0 and A\(r~}(C)) =1 = Xi(C) = 1. So A is completely regular. O
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