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Abstract

The purpose of this thesis is to study localisations and completions of nilpotent groups, spaces and G-spaces,

and to contribute to the theory of each. We begin, in Chapter 2, with an introduction to nilpotent groups

and spaces, based around a proof of the classical characterisation of finitely generated nilpotent spaces. In

Chapter 3, we derive double coset formulae for the genus and extended genus of a finitely generated nilpotent

group. In Chapter 4, we prove that T -completion preserves homotopy fibre squares of nilpotent spaces. In

Chapter 5, we develop the equivariant generalisation of the theory of nilpotent spaces. We conclude the

thesis, in Chapter 6, with a few more results, centred around the closure properties of the category of well

pointed spaces with the homotopy type of a CW complex, that we have used in previous chapters. We

invite the reader to read the Introduction, Chapter 1, where we describe the results of each chapter in more

detail.
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Chapter 1

Introduction

The purpose of this thesis is to study localisations and completions of nilpotent groups, spaces and G-spaces,

and to contribute to the theory of each. Nilpotent spaces arise in topology since they are precisely the spaces

which are equivalent to Postnikov towers, and it is for this reason that they have particularly nice algebraic

properties with respect to Bousfield localisation at the homology theories H∗(−;⊕p∈TFp) and H∗(−;ZT ),

where T is a set of primes. For example, the Serre spectral sequence can be used to prove, by induction

up towers, that the homotopy groups of a nilpotent space are finitely generated iff its homology groups are,

and similar arguments can be used to prove that a map of nilpotent spaces is a T -localisation iff it is a

T -localisation at the level of homotopy or homology groups. Completion is more subtle, partially due to the

existence of higher derived functors in the abelian group case, but even here we can inductively prove that

a nilpotent space is T -complete iff its homotopy groups are, and that a T -completion of nilpotent spaces

induces T -completion followed by the inclusion of a summand at the level of homotopy groups.

We begin the thesis, in Chapter 2, with an introduction to nilpotent groups and spaces, which is based around

a proof of the following characterisation of f -nilpotent spaces ( [MP12, Theorem 4.5.2]):

Theorem 1.0.1: Let X be a nilpotent space. Then the following statements are equivalent:

i) X is weakly equivalent to a CW complex with finite skeleta,

ii) X is f -nilpotent,

iii) πi(X) is finitely generated for each i ≥ 1,

iv) π1(X) and, for i ≥ 2, Hi(X̃) are finitely generated,

v) Hi(X) is finitely generated for each i ≥ 1.

We introduce nilpotent groups in Section 2.1, before deriving some properties of finitely generated nilpotent

groups in Section 2.2. This allows us to prove the purely algebraic parts of Theorem 1.0.1. Moving onto the

topology, we introduce nilpotent spaces in Section 2.3, and develop some of their basic theory, such as their

4



CHAPTER 1. INTRODUCTION 5

relationship to Postnikov towers. In Section 2.4, we resume the proof of Theorem 1.0.1, by proving a theorem

of Wall, [Wal65, Theorem A], which gives a criterion for when a space is equivalent to a CW complex with

finite skeleta. The criterion applies to show that K(G, 1) is equivalent to a CW complex with finite skeleta

whenever G is a finitely generated nilpotent group, and this kick starts the proof of Serre’s theorem, that the

homotopy groups of a simply connected space are finitely generated iff its homology groups are, in Subsection

2.4.2. We complete the proof of Theorem 1.0.1 in Subsection 2.4.3, by proving that if each homology group

of a nilpotent space is finitely generated, then so are the homology groups of its universal cover.

Other topics covered in Chapter 2 include the construction of relative Postnikov towers, in Theorem 2.3.11, for

maps between connected spaces inducing a nilpotent action on a possibly disconnected fibre, cocellular maps

and homotopies, in Subsection 2.3.2, and a brief review of the construction of localisations and completions

of nilpotent spaces, in Section 2.5.

The purpose of Chapter 3, is to derive double coset formulae for the genus and extended genus of an fZT -

nilpotent group, where the genus and extended genus are defined as follows, relative to a decomposition of

the set of primes, T = ∪iTi:

Definition 1.0.2: Let G be an fZT -nilpotent group. Define:

i) the genus of G to be the set of isomorphism classes of fZT -nilpotent groups, H, such that for every i ∈ I,

HTi
∼= GTi

,

ii) the extended genus of G to be the set of isomorphism classes of T -local nilpotent groups, H, such that for

every i ∈ I, HTi
∼= GTi .

After quickly reviewing the results about localisations of nilpotent groups that we will use, in Section 3.2,

we set about deriving the following two double coset formulae in Sections 3.3 and 3.4, respectively:

Theorem 1.0.3: The extended genus of G is in 1-1 correspondence with the double coset:

Aut(GS)\Autb.a.(
∏
iGS)/

∏
iAut(GTi

)

where Autb.a.(
∏
iGS) is the monoid of automorphisms of the form

∏
i αi which are S-bounded above, see

Definition 3.3.1.

Theorem 1.0.4: The genus of G is in 1-1 correspondence with the double coset:

Aut(GS)\Autb(
∏
iGS)/

∏
iAut(GTi

)

where Autb(
∏
iGS) is the subgroup of automorphisms of the form

∏
i αi which are S-bounded, see Definition

3.4.1.

These results provide the correct generalisation of the double coset formula for the genus described in eg.

[HY17, Example 2.3] to the case where I is an infinite indexing set, such as when Ti = {pi}, where pi is the

ith prime.
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The double coset formulae of Theorems 1.0.3 and 1.0.4 are formulated relative to a fixed fracture square with

the diagonal map, ∆ : GS →
∏
GS , along the base. In Section 3.5, we investigate what happens if we try to

derive double coset formulae with respect to a formal fracture square, with a localisation, ω : GS → (
∏
GTi

)S ,

along the base. It turns out that such a fracture square only sees the genus of G, and not the extended genus,

and we can derive the following double coset formula for the genus:

Theorem 1.0.5: There is a 1-1 correspondence between the genus of G and the double coset:

Aut(GS) \ DAut((
∏
GTi

)S) /
∏
Aut(GTi

)

where DAut((
∏
GTi

)S) is the subgroup of diagonal automorphisms of (
∏
GTi

)S, see Definition 3.5.1.

The following satisfying result, which is at the heart of Section 3.5, explains why the formal fracture square

only sees the genus, and allows us to relate the double coset formulae for the genus given in Theorems 1.0.4

and 1.0.5:

Lemma 1.0.6: An automorphism, α ∈
∏
Aut(GS), is the image of a diagonal automorphism iff α is S-

bounded.

We also discuss, in Subsection 3.1.1, some other notions of genus, such as the adelic genus of an fZT -nilpotent

group or space, and review some other double coset formulae which can be found in the literature.

Our convention in this thesis is that all nilpotent spaces are connected, and a disjoint union of nilpotent

spaces is called a componentwise nilpotent space. With this in mind, the aim of Chapter 4 is to prove the

following result, which is a generalisation of the connected fibre lemma of Bousfield and Kan, [BK72a, Ch.

II Lemma 4.8]:

Theorem 1.0.7: Let f : X → A and g : Y → A be maps between connected nilpotent spaces such that N(f, g)

is connected. If we have a commutative diagram:

X A Y

X̂T ÂT ŶT

f g

f̂T ĝT

such that the vertical maps are T -completions, then the induced map N(f, g) → N(f̂T , ĝT ) is a T -completion.

It follows from Theorem 1.0.7, that a functorial T -completion preserves homotopy fibre squares of nilpotent

spaces. As an application of Theorem 1.0.7, we deduce the following fracture square, [DFK77, Theorem 4.4],

associated to a T -local nilpotent space:

Theorem 1.0.8: Let X be a T -local nilpotent space. Then any commutative square:
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X X̂T

X0 (X̂T )0

ϕ̂

ψ ϕ

ϕ̂0

with ϕ̂ a T -completion and ψ, ϕ rationalisations, is a homotopy fibre square.

We will see in Subsection 5.3.3, that further fracture squares for nilpotent spaces and groups follow in short

order from Theorem 1.0.8, at least once one has got to grips with some general properties of homotopy

pullbacks.

Along the way to proving Theorem 1.0.7, we make heavier use of a spectral sequence associated to a map be-

tween nilpotent groups, [BK72a, Ch. III, Lemma 5.8], than in the past, to derive the following useful criterion,

which allows us to recognise when the kernel and, if the image is normal, the cokernel of a homomorphism

between C-nilpotent groups are C-nilpotent:

Lemma 1.0.9: Let C be a class of abelian groups which is closed under taking kernels and cokernels of abelian

group homomorphisms between members of C. Let f : G→ H be a group homomorphism between C-nilpotent

groups. Then, the kernel and, if the image is normal, the cokernel of f are C-nilpotent. Examples of such C

include:

i) the class of R-modules, where R is a solid ring ( [BK72b, Definition 2.1]),

ii) the class, BT , of T -complete abelian groups,

iii) the class of f ẐT -modules (that is, the class of finitely generated ẐT -modules),

iv) the class of T -complete abelian groups A, such that, for every p ∈ T , Âp is an f Ẑp-module.

As an application of Lemma 1.0.9, we deduce the following additional properties of the categories of T -

complete and f ẐT -nilpotent groups:

Lemma 1.0.10: Let G be a T -complete nilpotent group, and H a T -complete subgroup. Then:

i) there is a subnormal series H = H0 ≤ H1 ≤ ... ≤ Hk = G, where each Hi is T -complete,

ii) if G is fẐT -nilpotent, then so is H,

iii) if T is a finite set of primes and G is f ẐT -nilpotent, then G satisfies the ascending chain condition (ACC)

for T -complete subgroups,

iv) if G is a T-torsion f ẐT -nilpotent group, then G is finite.

In Chapter 5, we develop the theory of localisations and completions of nilpotent G-spaces, where G is

a compact Lie group. Our treatment of the equivariant theory improves upon previous treatments, such

as in [MMT82], [May82] and [M+96, Ch. II], in the following ways. Firstly, we localise with respect to

localisation systems, which allows us to localise or complete at different sets of primes at different fixed point
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spaces. Secondly, we develop the theory in both a based and unbased context, which allows us to extend the

theory to G-spaces which are not G-connected, or have no G-fixed points. Thirdly, our approach allows us

to use a more general definition of a nilpotent G-space than in previous use - that is, we do not require a

common bound on the nilpotency class of πi(X
H), as H varies.

We take a homological approach to the theory, which allows us to use the Bousfield localisation process

to reduce the equivariant theory to the non-equivariant theory at fixed point spaces. The definition of a

localisation system is the starting point for such an approach - intuitively, it ensures that we invert more

primes at XK than XH , whenever K is subconjugate to H in G, and so we have a map XH → XK . Here,

completing at a set of primes, T , ‘inverts more primes’ than localising at T .

Definition 1.0.11: A localisation system is a functor T : Oop → Pop × 1, where P is the poset of subsets of

the set of prime numbers partially ordered by inclusion, 1 is the category with objects 0 and 1 and a single

arrow from 0 to 1, and O is the orbit category of G.

We can Bousfield localise with respect to the T-equivalences, defined in Definition 5.2.4, and the definition

of a localisation system ensures that the resulting model structure has the following properties:

Theorem 1.0.12: Let T be a localisation system. Then:

i) A based G-space Z is T-local iff ZH is T([G/H])-local for every H ≤ G,

ii) A map of based G-spaces X → Y is a T-localisation iff XH → Y H is a T([G/H])-localisation for every

H ≤ G.

Using Theorem 1.0.12, we deduce some fundamental properties of T-localisations of nilpotent G-spaces in

Subsections 5.3.1 and 5.3.2. For example, considering the appropriate constant localisation system, we have

that a nilpotent G-space is p-complete iff all homotopy groups πi(X
H) are p-complete. In Subsection 5.3.3,

we derive some new fracture squares for nilpotent G-spaces, using a general result on homotopy pullbacks,

Lemma 5.3.10, to deduce fracture squares for homotopy classes, Theorem 5.3.12, from fracture squares for G-

spaces, Theorem 5.2.12. We also use Lemma 5.3.10, to give an example of a non-constant localisation system,

T, and maps f, g : K → X, where K is a finite based G-CW complex and each XH is fZT ([G/H])-nilpotent,

such that fT ≃ gT and f0 ≃ g0, but f and g are not homotopic. Note that this cannot happen if T is a

constant localisation system, by Theorem 5.2.12, and, therefore, cannot happen non-equivariantly.

To conclude Chapter 5, we introduce equivariant Postnikov towers, in Subsection 5.3.4, and use them to relate

our homological approach to the theory to the classical cohomological approach of [MMT82] and [May82], in

Subsection 5.3.5. In particular, we prove:

Theorem 1.0.13: A map of G-spaces, f : X → Y , is a T-equivalence iff, for all T-local coefficient systems

A, f∗ : H∗(Y ;A) → H∗(X;A) is an isomorphism.

In Chapter 6, we introduce the closure properties of the category of well-pointed spaces of the homotopy
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type of a CW complex that have been used in previous chapters. Note that, for these spaces, reduced

cohomology is represented by based homotopy classes of maps into Eilenberg-MacLane spaces, which played

a role in our inductive construction of Postnikov towers, Theorem 2.3.11. For some results, it is useful to

view spaces of the (unbased) homotopy type of a CW complex as, precisely, the m-cofibrant objects in the

mixed model structure of Cole, [Col06]. Therefore, we begin the chapter with an introduction to the q,h,

and m-model structures on the category of spaces, taking the opportunity to showcase our favourite proof

of the factorisation axiom for the h-model structure, Lemma 6.1.4, along the way. In Section 6.3, we use

the m-model structure to prove one direction of a theorem of Stasheff, [Sta63], which is the non-equivariant

case of Theorem 1.0.14, below. We prove the other direction by making use of the fact that geometric

realisation takes Kan fibrations of simplicial sets to h-fibrations. In Section 6.4, we consider the equivariant

generalisation of Stasheff’s theorem:

Theorem 1.0.14: Let p : E → B be an h-fibration, and suppose that B has the G-homotopy type of a

G-CW complex. Then E has the G-homotopy type of a G-CW complex iff for every b ∈ B, p−1(b) has the

Hb-homotopy type of an Hb-CW complex, where Hb is the isotropy group of b.

Waner proved the more difficult direction in [Wan80, Corollary 4.14] - namely, that if E and B have the

G-homotopy type of a G-CW complex, then each fibre has the Hb-homotopy type of an Hb-CW complex.

In Theorem 6.4.6, we use the m-model structure to prove the reverse direction. Note that in this new

direction we are not assuming any kind of continuity of CW-structures on the fibres, even in the compact

Lie case.

We conclude the thesis, in Section 6.5, with an article defining locally F -trivial maps of simplicial spaces,

and proving the following theorem about them:

Theorem 1.0.15: If p : X → Y is a locally F -trivial map of simplicial spaces, and Y is a proper simplicial

space, then |p| is a Hurewicz fibration.

The theorem provides a common generalisation of the results that minimal fibrations of simplicial sets realise

to h-fibrations, [GJ09, Theorem 10.9], and that the realisation of the orbit map EG→ BG is an h-fibration,

whenever G is a topological group with a nondegenerate basepoint, [May75, Theorem 8.2]. The article is best

viewed as paired with May’s paper, [May90], in which he develops the basic properties of quasifibrations, and

gives an inductive criterion for when a map of spaces is a quasifibration, [May90, Theorem 2.7]. These results

can be used to conclude that the realisation of EG → BG is a quasifibration, whenever G is a grouplike

topological monoid with a nondegenerate basepoint. The only difference is that there is a shortcut available

to prove that EG→ BG is an h-fibration, [May75, Theorem 8.2], in the topological group case, which means

that the full generality of Theorem 1.0.15 is not needed in that context.
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1.0.1 Prerequisites

The prerequisites for reading this thesis are fairly minimal - we assume the reader has taken a first course

in homotopy theory, such as [May99], and is familiar with the first two chapters of [MP12], which discuss

fundamental group actions in fibre sequences and some basic properties of homotopy limits, as well as chapter

24 of [MP12], which discusses the Serre spectral sequence. At times, we will refer the reader to other parts

of [MP12] for topics which are already well-covered there. We do not assume any familiarity with nilpotent

groups, and will derive the results we need about them from scratch. In Chapter 5, we assume familiarity

with model categories and the Bousfield cardinality argument, as well as the basics of equivariant homotopy

theory over a compact Lie group. Finally, some knowledge of simplicial sets, such as Chapter I of [GJ09],

would be useful for parts of Chapter 6.



Chapter 2

Introduction to Nilpotent Groups and

Spaces

In this introductory chapter, we will introduce the basic theory of nilpotent groups and spaces by proving

the following theorem, which provides a characterisation of finitely generated nilpotent spaces:

Theorem 2.0.1: Let X be a nilpotent space. Then the following statements are equivalent:

i) X is weakly equivalent to a CW complex with finite skeleta,

ii) X is f -nilpotent,

iii) πi(X) is finitely generated for each i ≥ 1,

iv) π1(X) and, for i ≥ 2, Hi(X̃) are finitely generated,

v) Hi(X) is finitely generated for each i ≥ 1.

We note that a complete proof of the theorem is scattered throughout the literature, and a sketch proof,

which pulls together the various sources, can be found in [MP12, Theorem 4.5.2].

2.1 Nilpotent groups

We will begin with the algebra, introducing nilpotent groups, as well as their basic properties. Our treatment

is influenced, in particular, by the introduction to nilpotent groups in [CMZ17], and most of the results of

this section can be found there. Firstly, we fix some notation:

Definition 2.1.1: Let G be a group. If x, y ∈ G, define the commutator of x and y by the formula [x, y] :=

x−1y−1xy. Define xy := y−1xy. The n-fold commutator [x0, ..., xn] of elements xi ∈ G is then defined

inductively by the formula [x0, ..., xn] := [[x0, ..., xn−1], xn].

The following identities relating to the commutator can be easily verified:

11
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Lemma 2.1.2: Let G be a group and x, y, z ∈ G. Then:

i) [x, y]z = [xz, yz],

ii) [xy, z] = [x, z]y[y, z],

iii) [x, yz] = [x, z][x, y]z,

iv) [x−1, y] = [x, y−1]x
−1y.

Proof. See [CMZ17, Lemma 1.4].

We now consider subgroups generated by commutators:

Definition 2.1.3: If S0, S1 are non-empty subsets of G, define [S0, S1] to be the subgroup of G generated by

the commutators [s0, s1], with s0 ∈ S0 and s1 ∈ S1. If S0, ..., Sn are non-empty subsets of G, we inductively

define [S0, ..., Sn] to be the subgroup generated by commutators of the form [x, sn], with x ∈ [S0, ..., Sn−1] and

sn ∈ Sn.

It is clear that each n-fold commutator of the form [s0, ..., sn], with si ∈ Si, is an element of [S0, ..., Sn] -

however, in general, [S0, ..., Sn] is not generated by such commutators. However, we do have:

Lemma 2.1.4: If H0, ...,Hn are normal subgroups of G, then [H0, ...,Hn] is a normal subgroup of G which

is generated by n-fold commutators [h0, ..., hn], with hi ∈ Hi.

Proof. Firstly, we can inductively show that [H0, ...,Hn] is normal using the fact that [x, y]z = [xz, yz]. Then,

using the fact that [xy, z] = [x, z]y[y, z], we can reduce to showing that [[h0, ..., hn−1]
−1, hn] is a product of

n-fold commutators and their inverses. This follows from the identity [x−1, y] = [x, y−1]x
−1y.

We can now introduce the lower and upper central series associated to a group G - we will see shortly that

a group is nilpotent iff either of these series terminate at 1 or G, respectively.

Definition 2.1.5: The lower central series of a group G, is the descending sequence of normal subgroups

defined for i > 0 by ΓiG := [G0, .., Gi], with each Gj = G. When i = 0, we take ΓiG = G.

Definition 2.1.6: The upper central series of a group G, is the ascending sequence of normal subgroups

defined by Z0G = 1, and, inductively, Zi+1G := π−1(Z( G
ZiG

)), where π : G → G
ZiG

is the quotient map.

Therefore, Z1(G) is the centre of G.

The next lemma provides a useful alternate characterisation of the component groups of the upper and lower

central series:

Lemma 2.1.7: i) ΓnG is the subgroup of G generated by the n-fold commutators [g0, ..., gn], with gi ∈ G,

ii) ZnG is the subgroup of G consisting of elements z such that for any choice of g1, ..., gn ∈ G, [z, g1, ..., gn] =

1.
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Therefore, ΓnG = 1 iff ZnG = G.

Proof. i) follows from Lemma 2.1.4 and ii) follows by induction from Definition 2.1.6. The remaining state-

ment is an easy consequence.

We can now define a nilpotent group, and relate the definition to the upper and lower central series:

Definition 2.1.8: A group G is called nilpotent if there exists a finite series of subgroups of the form:

1 = G0 ⊂ G1 ⊂ ... ⊂ Gk = G,

such that each Gi is normal in G and, for every i, Gi+1

Gi
⊂ Z( GGi

) (equivalently, [Gi+1, G] ⊂ Gi).

Lemma 2.1.9: If the series {Gi}ki=0 expresses G as a nilpotent group, then Gi ≤ ZiG and ΓiG ≤ Gk−i.

Proof. Suppose inductively that Gi ≤ ZiG. Then Gi+1 ≤ π−1( GGi
) ≤ π−1( G

ZiG
) = Zi+1G. Next, suppose

inductively that ΓiG ≤ Gk−i. Then, Γi+1G = [ΓiG,G] ≤ [Gk−i, G] ≤ Gk−i−1, since
Gk−i

Gk−i−1
is a central

subgroup of G
Gk−i−1

.

Corollary 2.1.10: A group G is nilpotent iff its upper central series terminates at G iff its lower central

series terminates at 1. Moreover, if G is nilpotent, both the upper and lower central series represent G as a

nilpotent group.

Definition 2.1.11: The nilpotency class of a nilpotent group G is the length of the lower central series of G,

which is equal to the length of the upper central series of G, and is the minimal possible length of any central

series representing G as a nilpotent group. Equivalently, c is the minimal integer such that ΓcG = 1.

Nilpotent groups are preserved under quotients, subgroups and central extensions. The exact formulation of

the following lemma will be useful for proving that the homotopy pullback of nilpotent spaces is componen-

twise nilpotent:

Lemma 2.1.12: If G is a nilpotent group, then any subgroup and any quotient group of G is nilpotent.

Moreover, if 1 → K → G → H → 1 is an exact sequence of groups such that K and H are nilpotent and K

is contained in ZiG for some i, then G is nilpotent.

Proof. This is a consequence of Lemma 2.1.7.

Recall that a subgroup H of G is subnormal if there is a finite chain of subgroups H = H0 ⊂ H1 ⊂ ... ⊂

Hk = G, with each Hi normal in Hi+1. Another important property of nilpotent groups is that all subgroups

are subnormal - this can often be used to inductively extend proofs that only work for normal subgroups to

include all subgroups.

Lemma 2.1.13: If H is a subgroup of a nilpotent group G, then H is subnormal in G.
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Proof. The sequence of subgroups given by HΓiG is a subnormal series for H, since if g ∈ ΓiG, then g

commutes with any element of G up to an element of Γi+1G.

Finally, for this section, we discuss bilinear maps induced by taking commutators:

Lemma 2.1.14: If {Gi} is a nilpotent series for G, then taking commutators defines a bilinear map:

Gi+1

Gi
⊗Ab(G) → Gi

Gi−1

Proof. For fixed g ∈ G, the map Gi+1 → Gi

Gi−1
defined by a→ [a, g] is a group homomorphism, since [ab, g] =

[a, g]b[b, g], and Gi

Gi−1
is central in G

Gi−1
. If a ∈ Gi, then [a, g] ∈ Gi−1, so we get a map G→ Hom(Gi+1

Gi
, Gi

Gi−1
).

Since [a, gh] = [a, h][a, g]h, we get a group homomorphism Ab(G) → Hom(Gi+1

Gi
, Gi

Gi−1
), as desired.

Applied to the lower central series, we get a surjective bilinear map:

Lemma 2.1.15: There is an epimorphism:

Ab(G)⊗ ...⊗Ab(G) → ΓnG

Γn+1G
,

sending (g0, ..., gn) to [g0, ..., gn].

Proof. This follows from Lemma 2.1.14 and Lemma 2.1.7.

The next result, which is [War76, Theorem 3.25], will be used repeatedly in Chapter 3:

Lemma 2.1.16: Let G be a nilpotent group of nilpotency class c, H a subgroup of G, and A a set of elements

of G such that there exists an s ∈ N such that a ∈ A =⇒ as ∈ H. Then, if g ∈ G is in the subgroup

generated by elements of A and H, gs
d ∈ H where d = 1

2c(c+ 1).

Proof. Let K be the subgroup of G generated by elements of A and H. Then K has nilpotency class e ≤ c.

Let:

1 = ΓeK ⊂ ... ⊂ Γ1K ⊂ Γ0K = K

be the lower central series of K. Suppose that k ∈ K is of the form xh where x ∈ ΓiK and h ∈ H. By Lemma

2.1.15, ΓiK
Γi+1K is an abelian group generated by commutators of the form [z0, ...., zi] where each zi ∈ A ∪H.

Since the commutators are bilinear, and ΓiK
Γi+1K is a central subgroup of K

Γi+1K , it follows that ks
i+1

= yh
′
for

some y ∈ Γi+1K, h
′ ∈ H.

We can also use Lemma 2.1.14 to study the upper central series. Let τp(G) denote the p-torsion subgroup of

a nilpotent group G, which is a subgroup by Lemma 2.1.16. We have:
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Lemma 2.1.17: Let G be a nilpotent group and r a non-negative integer. If τp(Z(G))
pr = 1, then, for all

i ≥ 0, τp(
Zi+1G
ZiG

)p
r

= 1.

Proof. Let z ∈ Zi+1G
ZiG

be p-torsion, and suppose that zp
r ̸= 1. Then, by Lemma 2.1.7, there exist g1, ..., gi

in Ab(G), such that [zp
r

, g1, ..., gi] = pr[z, g1, ..., gi] ̸= 1 in Z(G). However, [z, g1, ..., gi] is p-torsion, a

contradiction.

Corollary 2.1.18: Let G be a nilpotent group. Then, G is p-torsion-free iff Z(G) is p-torsion-free. Also, G

has bounded p-torsion iff Z(G) has bounded p-torsion.

2.2 Finitely generated nilpotent groups

We now restrict attention to finitely generated nilpotent groups. We will use our previous work to develop

their basic properties, culminating in a proof that finitely generated nilpotent groups are finitely presented

and have Noetherian group rings. We begin with the following definition:

Definition 2.2.1: An f -nilpotent group, or fZ-nilpotent group, is a nilpotent group G such that there exists

a series {Gk} representing G as a nilpotent group, for which each quotient Gi+1

Gi
is a finitely generated abelian

group.

Our previous results allow us to prove the bulk of the following theorem. The remainder of this section will

be devoted to proving the final sentence.

Theorem 2.2.2: Let G be a nilpotent group. Then the following are equivalent:

i) G is finitely generated,

ii) Ab(G) is finitely generated,

iii) G is f -nilpotent,

iv) Every subgroup of G is finitely generated.

Moreover, if these conditions are satisfied, then G is finitely presented, and Z[G] is a (left and right) Noethe-

rian ring.

Proof. The implications iv) =⇒ i) =⇒ ii) are trivial. The implication ii) =⇒ iii) follows from the

epimorphism of Lemma 2.1.15. It remains to prove that iii) =⇒ iv). For this we start with the fact that

all subgroups of a finitely generated abelian group are finitely generated. Suppose that the series:

1 = G0 → G1 → ...→ Gm = G

expresses G as an f -nilpotent group. Assume that every subgroup of Gk is finitely generated and consider

the short exact sequence:
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1 → Gk → Gk+1 → Gk+1

Gk
→ 1

in which both Gk and the finitely generated abelian group Gk+1

Gk
satisfy ‘Max’, which means that every

subgroup of them is finitely generated. This is the terminology used in [Hal54, Theorem 1], which is the

source of Lemma 2.2.5 below. Now if H is a subgroup of Gk+1, then the image of H in Gk+1

Gk
is finitely

generated, as well as H ∩Gk. It follows that H is finitely generated, and so Gk+1 satisfies Max. It follows,

inductively, that G satisfies Max.

Note that since every subgroup of an f -nilpotent group G is finitely generated, any series representing G as

a nilpotent group has finitely generated quotients.

For the remainder of this section, assume that G is a finitely generated nilpotent group. The fact that Z[G] is

Noetherian holds more generally for polycyclic groups, and we begin by showing that G is polycyclic.

Definition 2.2.3: A group G is called polycyclic if it has a subnormal series of the form:

1 = G0 → G1 → ...→ Gm = G

in which each quotient is a cyclic group.

By the structure theorem for finitely generated abelian groups, we know that finitely generated abelian groups

are polycyclic. The fact that G is polycyclic follows from this fact and an induction up a series expressing G

as an f -nilpotent group, using the next lemma.

Lemma 2.2.4: If K and H are polycyclic in the short exact sequence of groups:

1 → K → G→ H → 1,

then G is polycyclic.

Proof. Let the subnormal series {Ki} and {Hi} express K and H as polycyclic groups. Then we define a

subnormal series on G by:

1 = K0 → K1 → ...→ Km = K = f−1(H0) → f−1(H1) → ...→ f−1(Hn) = G

The fact that this series expresses G as a polycyclic group follows from the third isomorphism theorem for

groups.

A G-module, M , is said to satisfy Max-G if all G-submodules of M are finitely generated as G-modules.

The following lemma, due to P.Hall, [Hal54, Theorem 1], is precisely what’s needed to conclude that Z[G] is

Noetherian.
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Lemma 2.2.5: Suppose that H is a normal subgroup of G such that G
H is either finite or infinite cyclic, and

that N is an H-submodule of the right G-module M such that M = NG. Then if N satifies Max-H, M

satisfies Max-G.

Proof. If G
H is finite, then let g0, ..., gn be elements of G representing each element of G

H . Then Ngi is an

H-submodule of M for each i and we have an epimorphism ⊕iNgi → M , since M = NG. If A is an H-

submodule of Ngi, then A
′
= {n ∈ N |ngi ∈ A} is an H-submodule of N and so is finitely generated. It

follows that Ngi satisfies Max-H and, therefore, so do ⊕iNgi and M . It follows that M satisfies Max-G.

If G
H

∼= Z, let g be an element of G representing 1 ∈ G
H . Then, since M = NG, every element m ∈ M is of

the form:

m =
∑
k∈Z

nkg
k

where nk ∈ N for all k, and all but finitely many of the nk are 0. Let A be a G-submodule of M . If p, q are

integers such that p < q, define the H-submodule Np,q of N by:

Np,q = {n ∈ N | there exists
∑
k nkg

k ∈ A such that ni = 0 if i < p or i > q and np = n}

Multiplication by g and its inverse shows that Np,q depends only on the value of q − p, so define Ni = N0,i

for i ∈ N. Then we have an ascending chain of H-submodules of N :

N1 ⊂ N2 ⊂ ...

Since N satisfies Max-H, this sequence must terminate after finitely many steps, say at Nj , j ∈ N.

For each i ≤ j, let {mi,0,mi,1, ...,mi,ti} be a set of elements of A representing a generating set for Ni. We

claim that this is a generating set for A as a G-module. Suppose that:

m =
∑
k∈Z

nkg
k

is an element of A. By subtracting elements of the form mj,tg
kh and multiplying by some gs, we may assume

that nk = 0 for k < 0 and k > j − 1. Then, by subtracting elements of the form mi,th, where i < j, we can

reduce all the way to 0. Hence, A is a finitely generated G-module, as desired.

Corollary 2.2.6: If G is a polycyclic group, then Z[G] is a Noetherian ring.

Proof. This follows from the Lemma 2.2.5, the definition of a polycyclic group and the observation that if

H ≤ G, then Z[H] is an H-submodule of Z[G], and Z[G] = Z[H]G. Also, Z[1] = Z is Noetherian.
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This shows that f -nilpotent groups have Noetherian group rings. The final task of Theorem 2.2.2 is to show

that they are also finitely presented. We know that finitely generated abelian groups are finitely presented,

and so the result will follow by inducting up a series expressing G as an f -nilpotent group, using the following

lemma:

Lemma 2.2.7: If K and H are finitely presented in a short exact sequence of groups:

1 → K → G→ H → 1

then G is also finitely presented.

Proof. Let H = ⟨S | R⟩ be a presentation of H, where S is a finite set and R ⊂W (S, S−1) is a finite subset

of the words in S and their inverses. Similarly, let K = ⟨P | Q⟩ be a finite presentation of K. Then we have

an epimorphism ϕ : ⟨S ∪ P | ⟩ → G defined by sending elements of P to their images in G and elements of

S to a chosen preimage in G.

We will define three finite subsets of the kernel of ϕ. Firstly, we have

Q ⊂W (P, P−1) ⊂W ((S ∪ P ), (S ∪ P )−1).

For each r ∈ R, we have ϕ(r) ∈ K. Let wr be a word in P and P−1 representing ϕ(r)−1. Then we define:

R
′
= {rwr | r ∈ R} ⊂W (S ∪ P, (S ∪ P )−1)

Now let (s, p) be a pair consisting of an element s ∈ S ∪ S−1 and an element p ∈ P ∪P−1. The image of the

conjugate ps is in K and so let w(s,p) be a word in P and P−1 representing ϕ(ps)−1. Define:

T = {psw(s,p) | s ∈ S ∪ S−1, p ∈ P ∪ P−1}.

We claim that G = ⟨S ∪ P | Q ∪R′ ∪ T ⟩.

Suppose that:

w1v1w2v2...wkvk

is a product of words in P and P−1 (the wi) and words in S and S−1 (the vi), which is in the kernel of ϕ.

Then v1...vk is a product of conjugates of elements of R. Therefore, by multiplying by conjugates of elements

of R
′
, we may assume that v1...vk = 1. In this case our word is of the form:

wv11 ...w
vk
k

where the wi are words in P and the vi are words in S. In fact we may assume that each vi is an element of

S ∪ S−1, and each wi is an element of P ∪ P−1. Then this word is of the form:
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t(s1,p1)w
−1
(s1,p1)

...t(sk,pk)w
−1
(sk,pk)

where t(si,pi) is the element of T corresponding to (si, pi). Hence, by multiplying by conjugates of elements

of T , we may assume our original word is of the form w1, a word in P and P−1. This case is then dealt with

by multiplying by conjugates of elements of Q to reduce to 1.

Corollary 2.2.8: If G is an f -nilpotent group, then G is finitely presented.

2.3 Nilpotent Spaces

In this section, we introduce nilpotent spaces, and derive some of their basic properties. When working

with spaces, the homotopy groups involved are equipped with an action of the fundamental group of the

space. Therefore, it is necessary to generalise the definitions of Section 2.1 slightly, by defining a C-nilpotent

π-group. To do this, we recall the following definitions from [MP12]:

Definition 2.3.1: Let π be a group. A π-group is another group, G, equipped with an action of π on G via

automorphisms.

If G is abelian, we recover the notion of a π-module. Now, let C be a class of abelian groups.

Definition 2.3.2: Let G be a π-group. We say that G is a C-nilpotent π-group, if there exists a finite normal

series:

1 = G0 ⊂ G1 ⊂ ... ⊂ Gq = G

such that, for every i, Gi is a π-subgroup of G, Gi+1

Gi
∈ C, π acts trivially on Gi+1

Gi
, and Gi+1

Gi
is a central

subgroup of G
Gi

.

By convention, if C = Ab or π = 1, we can drop the C or π from the notation, as appropriate. In this case,

our new definition of a nilpotent group, agrees with the old one, Definition 2.1.8. Note that a π-module, M ,

is nilpotent iff there exists a natural number n such that InM = 0, where I is the augmentation ideal of

Z[π].

We have the following generalisation of Lemma 2.1.12:

Lemma 2.3.3: Let 1 → K → G→ L→ 1 be an exact sequence of π-groups. If the extension is central, and

K,L are C-nilpotent π-groups, then G is a C-nilpotent π-group. Conversely, if C is closed under passage to

subgroups and quotient groups and G is a C-nilpotent π-group, then K and L are C-nilpotent π-groups.

Proof. This is [MP12, Lemma 3.1.3].
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We can now define a nilpotent space:

Definition 2.3.4: A space X is said to be C-nilpotent if it is connected, and, for every i ≥ 1, πi(X) is a

C-nilpotent π-group, where π = π1(X).

Note that the condition on the fundamental group, π, is equivalent to π being a C-nilpotent group. Using

this algebraic definition of a nilpotent space, it is reasonably straightforward to prove that each component

of a homotopy pullback of nilpotent spaces is nilpotent:

Proposition 2.3.5: If f : X → B and g : Y → B are maps between nilpotent spaces, then every component

of N(f, g) is a nilpotent space.

Proof. Pick any basepoint for N(f, g). We will consider the long exact sequence of π1(N(f, g))-modules

associated to the fibre sequence:

ΩB →∂ N(f, g) → X × Y

To show that π1(N(f, g)) is nilpotent, it suffices to show that the image of ∂∗ is contained in some Ziπ1(N(f, g)),

by Lemma 2.1.12. By comparison with the fibre sequence associated to BI+ → B × B, it is clear that

π1(N(f, g)) acts nilpotently on π2(B), since B is nilpotent. Now, ∂ is a map of π1(N(f, g))-modules

which means that if g ∈ π1(N(f, g)), b ∈ π2(B), then ∂(g−1 · b) = g−1∂(b)g. Therefore, ∂(−b + g−1 · b) =

∂(b)−1g−1∂(b)g = [∂(b), g]. So considering (g−1−1) as an element of the augmentation ideal in Z[π1(N(f, g))],

we have ∂((g−1 − 1) · b)) = [∂(b), g]. Iterating this, we have for any g1, ..., gk ∈ π1(N(f, g)),

[∂(b), g1, ..., gk] = ∂((g−1
k − 1)...(g−1

1 − 1) · b)

Since π2(B) is a nilpotent π1(N(f, g))-module, this implies there is some k such that [∂(b), g1, ..., gk] = 1 for

any choice of elements in π1(N(f, g)). This is equivalent to saying ∂(b) ∈ Zkπ1(N(f, g)), as desired.

The fact that πi(N(f, g)) is a nilpotent π1(N(f, g))-group for i ≥ 2, follows from the fact that πi(X)×πi(Y )

is a nilpotent π1((N(f, g))-group and Lemma 2.3.3.

2.3.1 Relative Postnikov towers

Nilpotent spaces arise in topology, since they are precisely the spaces which can be approximated by Postnikov

towers. Roughly speaking, a Postnikov tower inductively constructs the homotopy groups of the space by

coattaching cocells of the form PK(A,n) → K(A,n), where A is an abelian group. In this way, Postnikov

towers can be viewed as ‘dual’ to CW-complexes, and, therefore, many results concerning CW complexes,

such as Whitehead’s theorem, have analogues for nilpotent spaces. Moreover, since a nilpotent space is

equivalent to a tower of principal fibrations, the Serre spectral sequence can be used to inductively extend

properties of the Eilenberg MacLane spaces that build the tower, to the nilpotent space itself.
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We will now prove a relative version of the result that nilpotent spaces are equivalent to Postnikov towers,

since the relative version is well-known and used, eg in [Far03], but it is hard to find a proof in the literature.

We begin with the definition of a relative Postnikov tower:

Definition 2.3.6: A map of spaces, f : X → Y , is called a principal K(A,n)-fibration if it is the pullback of

the path-space fibration along a map k : Y → K(A,n+ 1). In particular, f is a fibration with fibre K(A,n).

Definition 2.3.7: Let B be a class of abelian groups. Let Q be the totally ordered set consisting of pairs of

natural numbers ordered by (m,n) ≤ (p, q) iff m < p or m = p and n ≤ q. A relative Postnikov B-tower is a

functor Q → Sp, satisfying:

i) the map Xn,i+1 → Xn,i is a principal K(Bn,i, n− 1)-fibration for some Bn,i ∈ B,

ii) for every n, Xn,i+1 → Xn,i is a homeomorphism for all but finitely many i,

iii) Xn+1,1
∼= limiXn,i.

Definition 2.3.8: Let f : X → Y be a map of spaces. A relative Postnikov B-tower for f , is a relative

Postnikov B-tower, {Xn,i}, and a weak equivalence X → limXn,i, such that X1,1 = Y and the composite

X → limXn,i → Y is equal to f .

As usual, we can drop the B from the notation if B = Ab. For the proof, we need a criterion to tell us whether

a fibration is a principal K(A,n)-fibration. For this, we will use the following reformulation of the relative

Hurewicz theorem:

Lemma 2.3.9: Let n ≥ 1. If f : X → Y is a map of connected spaces such that Ff is (n− 1)-connected and

π1(X) acts trivially on πn(Ff), then η : Ff → ΩCf is an n-equivalence which induces an isomorphism on

πn.

Our criterion is the same as [MP12, Lemma 3.4.2] in the case where n ≥ 1:

Lemma 2.3.10: Let n ≥ 0. Let f : X → Y be a map between connected well-pointed spaces of the homotopy

type of a CW complex such that Ff ≃ K(A,n). If n = 0, suppose that the image of π1(X) in π1(Y ) is

normal. If n ≥ 1, suppose that π1(X) acts trivially on A. Then there exists an equivalence X → Fk over Y ,

for some cofibration k : Y → K(A,n+ 1).

Proof. Suppose first that n ≥ 1. We know that η : Ff → ΩCf induces an isomorphism on πi for i ≤ n, by

Lemma 2.3.9. Therefore, there is a cofibration j : Cf → K(A,n+1) which induces an isomorphism on πn+1.

We now consider the diagram:
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X Fi Fk

Y

Cf K(A,n+ 1)

ν

f

w

i
k

j

where w is induced by j and ν is the canonical map which induces η on fibres. By construction, wν is a weak

equivalence, as desired.

If n = 0, Cf is a connected space with π1(Cf) = A = π1(Y )
π1(X) , and so we can construct the same diagram as

in the n ≥ 1 case. This time, we can observe that η induces a bijection on π0, and the result now follows

similarly.

We can now prove:

Theorem 2.3.11: Let X and Y be well-pointed, connected spaces of the homotopy type of a CW complex. If

f : X → Y is a map such that, for all n ≥ 1, πn(Ff) is a B-nilpotent π1(X)-module, and the image of π1(X)

in π1(Y ) is B-subnormal (that is subnormal with quotients in B), then there is a relative Postnikov B-tower

for f , with coattaching maps that are cofibrations.

Proof. Assume that n ≥ 1. Let {Gn,i} denote a B-nilpotent filtration of the π1(X)-group πn(Ff). Denote

also by Gn,i the image of Gn,i in πn(X) and the preimage of Gn,i in πn+1(Y ). Define Xn,i by first adding

(n + k)-cells for all triples (ϵ, δ, k), where k ≥ 1, ϵ : Sn+k−1 → X is a map, and δ : Cϵ → Y is a map with

δi = f , where i : X → Cϵ is the inclusion, and, if k = 1, the induced element of πn(Ff) being in Gn,i. Call

this space L0 and note that we can canonically extend f to L0. Now for each p ≥ 1, inductively define Lp

by attaching (n+ p+ 1)-cells to Lp−1 along all pairs (ϵ, δ), where ϵ : Sn+p → Lp−1 is a map and δ : Cϵ→ Y

is a map such that δi = f . At each stage, there is a canonical extension of f to Lp. We define Xn,i to be the

union of the Lp and we have a canonical extension of f to Xn,i. We have:

πj(Xn,i) =



πj(X) if j < n,

πn(X)
Gn,i

if j = n,

Gn,i if j = n+ 1,

πj(Y ) if j > n+ 1.

We also have that Xn,i is a relative subcomplex of Xm,j if n > m or n = m and i ≤ j. Furthermore, the

map Xn,max → Xn−1,0 is a weak equivalence, where Xn,max corresponds to the final group in the filtration

of πn(Ff), and so we can redefine Xn,max := Xn−1,0 for n ≥ 2. Our construction implies that the homotopy
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fibre of the map g : X → Xn,i satisfies:

πj(Fg) =


0 if j ≤ n− 1,

Gn,i if j = n,

πj(Ff) if j ≥ n+ 1.

Moreover, the π1(X)-action on Gn,i agrees with the π1(X)-action on πn(Ff). It follows easily that the ho-

motopy fibre of Xn,i → Xn,i+1 is K(
Gn,i+1

Gn,i
, n), and the action of π1(Xn,i) on

Gn,i+1

Gn,i
is trivial, by assumption.

We now have a map X1,max → Y which induces an isomorphism of πn for n ≥ 2 and is the inclusion of the

image of π1(X) on π1. Using the same methods as above, we can refine this map into a composition of maps

X0,i → X0,i+1 corresponding to the inclusion of successive groups in a B-subnormal series for the image of

π1(X) in π1(Y ). The theorem is now a consequence of successive applications of Lemma 2.3.10, with each

stage of the construction being a well-pointed space of the homotopy type of a CW complex by the results

of Section 6.3.

The fact that we can take the coattaching maps to be cofibrations is a convenient technical detail that we

will make use of in Chapter 4. Specialising to the case Y = ∗, yields:

Theorem 2.3.12: A connected space, X, is nilpotent iff it is equivalent to a Postnikov tower with cottaching

maps that are cofibrations.

Proof. If X is nilpotent, then Theorem 2.3.11 implies that there is a relative Postnikov tower for X → ∗,

with coattaching maps that are cofibrations. Since X is connected, B1,i = 0 for all i. Therefore, the relative

Postnikov tower in this case agrees with the usual definition of a Postnikov tower. In the other direction, a

straightforward inductive argument using the long exact sequence of a fibration, implies that the limit of a

Postnikov tower is a nilpotent space, see eg [MP12, page 63].

2.3.2 Cocellular maps and homotopies

Finally, for this section, we take the analogy between Postnikov towers and CW complexes further, by

defining a cocellular map between Postnikov towers, and proving that any map between Postnikov towers

can be approximated by a cocellular map. We begin with the following well-known result, which is the heart of

the co-HELP lemma of [MP12, Theorem 3.3.7]. We will assume that all spaces in sight are well-pointed with

the homotopy type of a CW complex, so that cohomology is represented by maps into Eilenberg-MacLane

spaces.

Lemma 2.3.13: Let A be a fixed abelian group. A map f : X → Y induces an injection Hm(f ;A) and a

surjection Hm−1(f ;A) iff there always exist dashed lifts in diagrams of the form:
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PK(A,m) PK(A,m)I+ PK(A,m)

X Y

K(A,m) K(A,m)I+ K(A,m)

π0 π1

π0 π1

where PK(A,m) → K(A,m) is the path-space fibration.

Corollary 2.3.14: If f is an n-equivalence, then we can find lifts of diagrams of the form in Lemma 2.3.13,

for arbitrary A, provided that m ≤ n.

As in [May83], Lemma 2.3.13 is the starting point for proving the dual Whitehead theorems, and we refer

the reader either [May83] or [MP12, Theorem 3.3.8] for their proofs. In particular, we have that a homology

isomorphism between nilpotent spaces is a weak equivalence.

Recall that a Postnikov tower is a sequence of maps Xn,i+1 → Xn which are each principal K(B,n)-fibrations

for some abelian group B, where for each fixed natural number n, i ranges from 1 to some natural number

in, and Xn+1,1 = Xn,in . This differs, notationally, from the definition of a relative Postnikov tower we gave

in Definition 2.3.7. We will now define a cocellular maps between Postnikov towers, as well as cocellular

homotopies:

Definition 2.3.15: A cocellular map between Postnikov towers, f : X → Y , is a collection of maps fn :

Xn,1 → Yn,1 such that the squares:

Xn+1,1 Yn+1,1

Xn,1 Yn,1

fn+1

fn

commute. A cocellular homotopy between cocellular maps f, g : X → Y is a collection of maps Hn : Xn,1 →

Y
I+
n,1 such that π0Hn = fn, π1Hn = gn, and the squares:

Xn+1,1 Y
I+
n+1,1

Xn,1 Y
I+
n,1

Hn+1

Hn

commute.

We’ve seen that a nilpotent space is weakly equivalent to a Postnikov tower, and we will now prove the
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following naturality statement:

Lemma 2.3.16: If f : X → Y is a map between nilpotent spaces, then there is a cocellular map g making

the following square commute up to homotopy:

X Y

limXn,i limYn,i

f

γ≃ ≃

g

Moreover, g is unique up to cocellular homotopy.

Proof. The existence of g follows by inductively forming maps gn : Xn → Yn and homotopies Hn : X → Y
I+
n

using co-HELP as in the following diagram:

Yn+1,1 Y
I+
n+1,1 Yn+1,1

X Xn+1,1

Yn,1 Y
I+
n,1 Yn,1

df

Hn+1

Hn

gn+1

gnd

The map Yn+1,1 → Yn,1 is a composite of pullbacks of maps of the form PK(A,n + 1) → K(A,n + 1), and

the map X → Xn+1,1 is an (n+ 1)-equivalence, so the existence of the lifts follows from Lemma 2.3.13 and

Corollary 2.3.14. For the uniqueness statement, suppose that g1 and g2 are two cocellular maps making

the square commute. We inductively construct maps Ln : X → (Y
I+
n,1)

I+ and Kn : Xn,1 → Y
I+
n,1 using the

following diagram:

Y
I+
n+1,1 (Y

I+
n+1,1)

I+ Y
I+
n+1,1

X Xn+1,1

Y
I+
n,1 ×p Y 2

n+1,1 (Y
I+
n,1 ×p Y 2

n+1,1)
I+ Y

I+
n,1 ×p Y 2

n+1,1

H

Ln+1
Kn+1

The maps Hn are defined using some fixed homotopy H : X → limY
I+
n,i between g1γ and g2γ. The map

X → (Y
I+
n,1 ×p (Yn+1,1 × Yn+1,1))

I+ is defined using Ln, as well as the constant homotopies on g1n+1 and

g2n+1. The lifts exist since X → Xn+1,1 is an (n+ 1)-equivalence and Y
I+
n+1,1 → Y

I+
n,1 ×p (Yn+1,1 × Yn+1,1) is

a composite of pullbacks of maps of the form PK(A,n) → K(A,n). Then K = limKn defines a cocellular

homotopy between g1 and g2.
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The proof of Lemma 2.3.16 highlights one of the convenient features of cocell complexes when compared

with cell complexes. Since Ω reduces the dimension of K(A,n + 1), it was more comfortable to beat the

bound m ≤ n of Corollary 2.3.14 in the second half of the proof, where we were considering composites of

pullbacks of maps of the form PK(A,n) → K(A,n), when we could have got away with considering the

maps PK(A,n+ 1) → K(A,n+ 1) as in the first half of the proof. On the other hand, if looping increased

the dimension, the second half of the proof would fail. This is the case cellularly, where taking suspensions

increases the dimension of Sn. This has real implications. For instance, suppose that f : X → Y is a map

between CW-complexes, and g1, g2 are cellular maps homotopic to f . Then g
(n)
1 , g

(n)
2 : X(n) → Y (n) are not

necessarily homotopic, although they become homotopic after composing with the inclusion Y (n) → Y (n+1).

However, working cocellularly we have the following observation:

Lemma 2.3.17: Let f : X → Y be a map between simple spaces. Approximate X and Y by Postnikov towers

with a single cocell of each dimension. Then f induces a well-defined homotopy class of maps fn : Xn → Yn.

It follows that if a group acts up to homotopy on a simple space X, there is an induced action up to homotopy

on each Xn of a Postnikov tower associated to X with a single cocell in each each dimension. Therefore, if

G acts up to homotopy on a nilpotent space X, it also acts up to homotopy on the universal cover X̃ of X,

and on the spaces X̃n of a Postnikov tower for X̃ with a single cocell in each dimension. These observations

were exploited by Hilton in his proof of the following result:

Theorem 2.3.18: Let G act up to homotopy on a nilpotent space X. Then the following are equivalent:

i) G acts nilpotently on πi(X) for all i ≥ 1,

ii) G acts nilpotently on Hi(X) for all i ≥ 1,

iii) G acts nilpotently on π1(X) and on Hi(X̃) for all i ≥ 1.

Proof. This is [Hil76, Theorem 2.1].

Corollary 2.3.19: Let F → E → B be a fibre sequence with all spaces connected. Then π1(E) acts nilpotently

on π∗(F ) iff F is nilpotent and π1(B) acts nilpotently on H∗(F ).

Proof. This is [Hil76, Corollary 2.2].

2.4 Finitely generated nilpotent spaces

2.4.1 A Theorem of Wall

We now return to our proof of Theorem 2.0.1. We define an f -nilpotent space to be a B-nilpotent space,

where B is the class of finitely generated abelian groups. Using the algebraic results of Section 2.2, it is an

easy matter to prove:
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Lemma 2.4.1: Let X be a nilpotent space. Then X is an f -nilpotent space iff πi(X) is finitely generated for

all i ≥ 1.

Proof. If X is f -nilpotent, then πi(X) is an f -nilpotent group for all i ≥ 1. It follows that πi(X) is finitely

generated for i ≥ 1, by Theorem 2.2.2.

Let i ≥ 1. If πi(X) is finitely generated, then all subgroups are finitely generated by Theorem 2.2.2. In

particular, any series expressing πi(X) as a nilpotent π-group will have finitely generated quotients. Therefore,

X is f -nilpotent.

Next, we will prove a theorem of Wall concerning when a space is weakly equivalent to a CW complex with

finite skeleta ( [Wal65, Theorem A]). This will allow us to immediately prove the implication iv) ⇐⇒ i) of

Theorem 2.0.1, and the theorem will continue to be useful for the remaining implications. A key point of the

proof is the following observation, which is closely related to a result of J.H.C. Whitehead, [Whi50, Lemma

15]:

Lemma 2.4.2: Suppose that (Y,B) is an n-connected CW pair such that Y has finite skeleta. Then there

exists a weak equivalence of CW pairs (Y,B) → (Ŷ , B̂) such that Ŷ has finite skeleta and B̂ contains the

n-skeleton of Ŷ .

Proof. Suppose, inductively, that B contains that k-skeleton of Y , where −1 ≤ k < n. Let α : Sk → B

be the attaching map of a (k + 1)-cell of Y . Since (Y,B) is n-connected, an application of HELP yields an

extension of α, β : Dk+1 → B, and a homotopy rel Sk between β and the inclusion of the cell corresponding

to α into Y . Construct B̂α by considering Dk+1 as the lower hemisphere of Sk+1 and forming the pushout:

Dk+1 B

Dk+2 B̂α

β

Construct Ŷα by first attaching an (k + 2)-cell to Y along the map γ : Sk+1 → Y defined on the lower

hemisphere by β, and on the upper hemisphere by the inclusion of the cell corresponding to α. By assumption,

γ is nullhomotopic. Call the space constructed so far Y
′

α. To define Ŷα, attach an (k + 3)-cell to Y
′

α along

a map Dk+2 → Y
′

α, defined on the lower hemisphere by a nullhomotopy of γ, and on the upper hemisphere

by the inclusion of the cell corresponding to γ. Then, (Y,B) → (Ŷα, B̂α) is a weak equivalence, the (k + 1)-

skeleton of Y equals the (k + 1)-skeleton of Ŷα, and B̂α contains the (k + 1)-cell α. Repeating the process

for all the cells in the (k + 1)-skeleton of Y , results in a weak equivalence (Y,B) → (Ŷ , B̂) such that Ŷ has

finite skeleta, the (k+ 1)-skeleton of Y equals the (k+ 1)-skeleton of Ŷ , and B̂ contains the (k+ 1)-skeleton

of Ŷ . The result now follows by induction.
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Theorem 2.4.3: A space X is weakly equivalent to a CW complex with finite skeleta iff each of the following

conditions is satisfied:

i) π = π1(X) is finitely presented,

ii) for every map σ : K → X from a connected finite CW complex K which induces an isomorphism on

fundamental groups, π1(Fσ) is finitely generated as a π-module,

iii) for every n-connected (n ≥ 2) map σ : K → X from a finite CW complex K, πn(Fσ) is finitely generated

as a π-module.

Proof. ( ⇐= ) We’ll first show that if each of the conditions is satisfied, then X is weakly equivalent to

a CW complex with finite skeleta. Since π is finitely presented, we can construct, using the van Kampen

theorem, a finite CW complex K, with cells of dimension ≤ 2, equipped with a map σ : K → X inducing

an isomorphism on fundamental groups. Now assume inductively that we have constructed a finite CW

complex K and, either a map inducing an isomorphism on fundamental groups, σ : K → X, for n = 1, or

an n-connected map σ : K → X for n ≥ 2. Then, picking a finite number of maps Sn → Fσ which generate

πn(Fσ) as a π-module specifies an extension i : K → K
′
induced by attaching (n+1)-cells, and an extension

of σ to σ
′
: K

′ → X. We have the fibre sequence:

Fi→ Fσ → Fσ
′

Note that if n = 1, then π1(Fσ) is abelian due to the assumption that σ induces an isomorphism on π1.

Moreover, for all n, the long exact sequence of homotopy groups associated to the fibration above is a long

exact sequence of π-modules. Due to our construction of the map σ
′
, it follows that σ

′
is an (n+1)-connected

map from a finite CW complex K
′
. This completes the proof of one direction.

( =⇒ ) It suffices to prove the converse by assuming that X is a CW complex with finite skeleta. By the van

Kampen theorem, it is clear that π is finitely presented. Let σ : K → X be a map from a finite CW complex

K, as in condition ii) or iii). Then we may as well assume that σ is a cellular map and then replace σ by

the inclusion i : K → Mσ, where Mσ is a CW complex with finite skeleta and K is a subcomplex. Using

Lemma 2.4.2, we can replace (Mσ,K) by a CW pair (Y,B), where Y has finite skeleta and B contains the

n-skeleton of Y . We have:

πn(Fi) = πn+1(Y,B) = πn+1(Ỹ , B̃) = Hn+1(Ỹ , B̃),

where the final equality follows from the relative Hurewicz theorem and the middle equality follows, when

n = 1, from the fact that σ induces an isomorphism on fundamental groups. Considering the cellular chain

complex of (Ỹ , B̃), we see that it is zero at degree n and is a finitely generated π-module at degree n+ 1. It

follows that the quotient group Hn+1(Ỹ , B̃) is a finitely generated π-module, as desired.
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The following corollary is useful for applications:

Corollary 2.4.4: If X is a space such that π1(X) is finitely presented, Z[π] is a Noetherian ring and Hi(X̃)

is a finitely generated π-module for all i, then X is weakly equivalent to a CW complex with finite skeleta.

Proof. Suppose that σ : K → X is an n-connected map (n ≥ 1) from a finite CW complex K which induces

an isomorphism on fundamental groups. Then we have πi(Fσ) ∼= Hi+1(X̃, K̃). Consider the exact sequence:

...→ Hi+1(K̃) → Hi+1(X̃) → Hi+1(X̃, K̃) → Hi(K̃) → Hi(X̃) → 0

Hi+1(X̃) is a finitely generated π-module by assumption and Hi(K̃) is too since K is a finite cell complex.

Since Z[π] is Noetherian, any submodule of Hi(K̃) is also a finitely generated π-module. It follows that

Hi+1(X̃, K̃) is a finitely generated π-module, which means that X satisfies the conditions i) - iii) of Theorem

2.4.3.

In light of Theorem 2.2.2, we have the following consequence:

Corollary 2.4.5: If G is a finitely generated nilpotent group, then K(G, 1) is weakly equivalent to a CW

complex with finite skeleta.

Finally, for this section, we prove the implication iv) ⇐⇒ i) of Theorem 2.0.1. For the proof, we will use

the fact that, if X is a nilpotent space, then Hi(X̃) is a nilpotent π-module for all i ( [MP12, Proposition

4.2.1]). We will also prove this in Lemmas 4.2.7 and 4.2.8, with no intermediate theory required.

Lemma 2.4.6: If X is a nilpotent space, then X is weakly equivalent to a CW complex with finite skeleta iff

π1(X) and Hi(X̃) are finitely generated for all i.

Proof. IfX is a nilpotent space which is weakly equivalent to a finite CW complex, then π is finitely presented,

and, hence, a finitely generated nilpotent group. Moreover, Hi(X̃) is finitely generated as a π-module. Since

Z[π] is Noetherian, it follows that all quotients of a series expressing Hi(X̃) as a nilpotent π-module are

finitely generated π-modules on which π acts trivially. This means they are finitely generated abelian groups.

Inducting up the series, we see that this implies that Hi(X̃) is also a finitely generated abelian group, as

desired.

Now assume that π1(X) and Hi(X̃) are finitely generated. Then π is f -nilpotent and, therefore, π is finitely

presented and Z[π] is Noetherian. Since Hi(X̃) is also finitely generated viewed as a π-module, Corollary

2.4.4 implies that X is weakly equivalent to a CW complex with finite skeleta.

2.4.2 A Theorem of Serre

We will now move on to a classical result of Serre - that for simply connected spaces X, all homotopy groups

of X are finitely generated iff all homology groups of X are ( [Ser53]). The strategy of proof will be to replace
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the simply connected space X by a Postnikov tower and induct up it using the Serre spectral sequence. From

Lemma 2.4.5, we know that if A is a finitely generated abelian group, then K(A, 1) is weakly equivalent to

a CW complex with finite skeleta, and so, in particular, has finitely generated homology groups. The next

lemma allows us to extend this result to K(A,n) for n > 1:

Lemma 2.4.7: If X is simply connected, then Hi(X) is finitely generated for all i iff Hi(ΩX) is finitely

generated for all i.

Proof. Consider the Serre spectral sequence for the fibration:

ΩX → PX → X

where the local coefficient system is trivial since X is simply connected. Since PX is contractible, the only

non-zero term of the E∞-page is E∞
0,0

∼= Z. We have exact sequences:

Err,q−r+1 → Er0,q → Er+1
0,q → 0

Suppose that Hi(X) is finitely generated for all i, and that Hi(ΩX) is finitely generated for i < q. Then, for

r ≥ 2:

E2
r,q−r+1 = Hr(X,Hq−r+1(ΩX))

is finitely generated, since if A,B are finitely generated abelian groups, then Tor1(A,B) is finitely generated

since it can be expressed as a homology group of a chain complex of finitely generated abelian groups. It

follows that Err,q−r+1 is finitely generated, and by induction using the exact sequence above, that E2
0,q =

Hq(ΩX) is finitely generated. Therefore, by induction, if Hi(X) is finitely generated for all i, then Hi(ΩX)

is finitely generated for all i. The proof of the reverse implication is entirely analogous.

Corollary 2.4.8: If A is a finitely generated abelian group and n ≥ 1, then K(A,n) is weakly equivalent to

a CW complex with finite skeleta.

Proof. Inductively, Lemma 2.4.7 implies that Hi(K(A,n)) is finitely generated for all i, so the result follows

from Corollary 2.4.4.

We can now prove:

Theorem 2.4.9: If X is simply connected, then πi(X) is finitely generated for all i iff Hi(X) is finitely

generated for all i.

Proof. Since X is simple, which means that the fundamental group acts trivially on the homotopy groups of

X, we can assume that X is the limit of a Postnikov tower:
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...→ Xn+1 → Xn → ...→ X1 = ⋆

induced by fibre sequencex:

Xn+1 → Xn → K(πn+1(X), n+ 2)

If Hi(Xn) is finitely generated for all i, then inspection of the argument given in Lemma 2.4.7 shows that

we only used the fact that the E∞ page was finitely generated. Therefore, the argument can be generalised

to show that Hi(Xn+1) is finitely generated for all i iff Hi(K(πn+1(X), n+ 2)) is finitely generated for all i.

Therefore, if πi(X) is finitely generated for all i, an inductive argument using the fact thatHi(K(πn+1(X), n+

2)) is finitely generated for all i and n, shows that Hi(Xn) is finitely generated for all i and n. It follows that

Hi(X) is finitely generated for all i, since the groups Hi(Xn) eventually stabilise at Hi(X) for large n.

Now suppose that Hi(X) is finitely generated for all i. The map X → Xn is an (n + 1)-equivalence, since

πn+1(Xn) = 0, and so Hi(X) → Hi(Xn) is an isomorphism for i ≤ n and a surjection when i = n + 1. It

follows that Hi(Xn) is finitely generated whenever i ≤ n + 1. Suppose that we have proved that πi(X) is

finitely generated for i ≤ n. Then inductively, similarly to our previous work, we can show that Hj(Xi) is

finitely generated for i ≤ n and all j. Consider the Serre spectral sequence for the fibration:

Xn+1 → Xn → K(πn+1(X), n+ 2)

Then E∞
p,q is finitely generated for all p and q, and Er0,q is finitely generated whenever q ≤ n + 2. We also

have E2
n+2,0 = πn+1(X). We have exact sequences:

0 → Er+1
n+2,0 → Ern+2,0 → Ern−r+2,r−1

When r = n + 2, Er+1
n+2,0 = E∞

n+2,0 and Ern−r+2,r−1 = En+2
0,n+1 and so both of these are finitely generated. It

follows that En+2
n+2,0 is finitely generated. For 2 ≤ r < n + 2, Ern−r−2,r−1 = 0 and so, inductively, it follows

that E2
n+2,0 = πn+1(X) is finitely generated, as desired. It follows, again inductively, that πi(X) is finitely

generated for all i.

We can now prove another implication of Theorem 2.0.1:

Corollary 2.4.10: If X is a connected space, then πi(X) is finitely generated for every i ≥ 1 iff π1(X) and,

for i ≥ 2, Hi(X̃) are finitely generated.

Proof. This follows from applying Theorem 2.4.9 to the universal cover of X.
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2.4.3 Completing the proof

We have already shown that the first four conditions of Theorem 2.0.1 are equivalent and that i) =⇒ v).

Therefore, to complete the proof of Theorem 2.0.1, we just need to show that v) implies any one of i)− iv).

We will show that v) =⇒ iv). We will, again, use that, if X is nilpotent, then π1(X) acts nilpotently on

Hi(X̃).

Theorem 2.4.11: Let X be a nilpotent space. If Hi(X) is finitely generated for each i ≥ 1, then π1(X) and,

for i ≥ 2, Hi(X̃) are finitely generated.

Proof. By the Hurewicz theorem, the abelianisation of the nilpotent group π = π1(X) is finitely generated,

and so it follows that π itself is finitely generated by our algebraic result, Theorem 2.2.2. Consider the Serre

spectral sequence of the fibration:

X̃ → X → K(π, 1)

Since π is finitely presented and Z[π] is Noetherian, it follows that K(π, 1) is weakly equivalent to a CW

complex with finite skeleta. The E∞ page is finitely generated by assumption, and we have that E2
p,0 =

Hp(K(π, 1);H0(X̃)) = Hp(K(π, 1)) is finitely generated. Suppose that we have shown Hi(X̃) is finitely

generated for i ≤ n. We have exact sequences:

Err,n−r+2 → Er0,n+1 → Er+1
0,n+1 → 0

Now, E2
r,n−r+2 = Hr(K(π, 1);Hn−r+2(X̃)) and, if r ≥ 2, this is finitely generated since it is the homology of a

complex of finitely generated abelian groups, namely the cellular chain complex, with finitely generated local

coefficients, of a CW complex with finite skeleta. It follows, inductively, that E2
0,n+1 is finitely generated.

We have:

E2
0,n+1 = H0(K(π, 1);Hn+1(X̃)) = Hn+1(X̃)/π

The rest our proof will be analogous to the proof that if G is a nilpotent group such that Ab(G) is finitely

generated, then G is finitely generated. Note that if G is a group, and I ⊴ Z[G] is the augmentation ideal,

it is easily verified that I is finitely generated as a Z[G]-module iff G is finitely generated. We also have an

isomorphism of abelian groups, I
I2

∼= Ab(G). Now, let M = Hn+1(X̃) and G = π, and observe that there is

an epimorphism:

I

I2
⊗ ...⊗ I

I2
⊗ M

IM
→ InM

In+1M
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defined by the Z[π]-action on M . Since Ab(G) and M
IM = E2

0,n+1 are finitely generated, it follows that all

InM
In+1M are finitely generated. Since M is a nilpotent π-module, it follows that M = Hn+1(X̃) is finitely

generated. Inductively, it now follows that Hi(X̃) is finitely generated for all i, as desired.

2.5 Localisations and completions of nilpotent spaces

In this section, we will review the construction of localisations and completions of nilpotent spaces via

induction up Postnikov towers, following [MP12, Sections 5.3 and 10.3]. We will assume the reader is familiar

with the basic theory of localisations and completions of abelian groups, as outlined in [MP12, Sections 5.1

and 10.1]. As in Section 2.4, the Serre spectral sequence will play a key role in the arguments, and we record

here the refinement of the Zeeman comparison theorem due to Hilton and Roitberg, [HR76]:

Theorem 2.5.1: Consider a map of fibrations:

F E B

F
′

E
′

B
′

f1 f f2

in which all spaces are connected, π1(B), π1(B
′
) are nilpotent, and act nilpotently on H∗(F ) and H∗(F

′
),

respectively. Take all homology to have coefficients in a fixed abelian group. The following conclusions hold:

i) Let P ≥ 2 and Q ≥ 0 be fixed integers. Suppose that:

a) Hq(f1) is an isomorphism for q < Q, and HQ(f1) is surjective,

b) Hp(f2) is an isomorphism for p < P , and HP (f2) is surjective.

Then, Hn(f) is an isomorphism for n < N := min(P,Q), and HN (f) is surjective.

ii) Let P ≥ 2 and N ≥ 0 be fixed integers. Suppose that:

a) Hn(f) is an isomorphism for n < N , and HN (f) is surjective,

b) Hp(f2) is an isomorphism for p < P , and HP (f2) is surjective.

Then, Hq(f1) is an isomorphism for q < Q := min(N,P − 1), and HQ(f1) is surjective.

iii) Let N ≥ 0 and Q ≥ 0 be fixed integers. Suppose that:

a) Hn(f) is an isomorphism for n < N , and HN (f) is surjective,

b) Hq(f1) is an isomorphism for q < Q, and HQ(f1) is surjective,

c) π1(B) → π1(B
′
) is an isomorphism.

Then, Hp(f2) is an isomorphism for p < P := min(N,Q+ 1), and HP (f2) is surjective.

The proof is a carefully arranged inductive argument, which makes repeated use of the Four Lemma for
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abelian groups. We are mostly interested in the case where P,Q,N = ∞, and the fundamental groups act

trivially on the homology of the fibres. However, we will have occasion to consider nilpotent actions on the

homology of the fibres in Chapter 4.

Next, we introduce the definitions of localisation and completion at a set of primes T :

Definition 2.5.2: Let f : X → Y be a map of spaces. We call f a ZT -equivalence if it induces an isomorphism

on homology with coefficients in ZT , where ZT denotes the integers localised at T . We call f an FT -equivalence

if it induces an isomorphism on homology with coefficients in Fp, for all p ∈ T .

Definition 2.5.3: Let Z be a space. We say that Z is T -local if f∗ : [Y, Z] → [X,Z] is a bijection for all

ZT -equivalences, f : X → Y , between cofibrant objects. We say that Z is T -complete if f∗ : [Y,Z] → [X,Z]

is a bijection for all FT -equivalences, f : X → Y , between cofibrant objects.

Definition 2.5.4: A map f : X → Y is called a T -localisation (of X) if it is a ZT -equivalence to a T -local

space. A map f : X → Y is called a T -completion (of X) if it is an FT -equivalence to a T -complete space.

Assuming that all spaces are cofibrant, a map from X to a T -local space will factor uniquely, up to homotopy,

through its T -localisation, and completion has an analogous universal property.

The following result is crucial for our inductive construction of localisations and completions of nilpotent

spaces, and the proof is surprisingly computational. The difficulty with giving a more conceptual proof is

that multiplication by p on A does not necessarily induce multiplication by p on all homology groups of

K(A,n):

Theorem 2.5.5: Let T be a set of primes. If A is a T -local abelian group, then, for all n,m ≥ 1, Hn(K(A,m))

is T -local.

Proof. We can reduce to the case where T is the set of primes not equal to a prime p. Then K(ZT , 1) is

the sequential colimit of the maps K(Z, 1) → K(Z, 1) which induce multiplication by p on π1. Therefore,

H1(K(ZT , 1), 1) = ZT and, as for S1, the higher homology groups of K(ZT , 1) are zero. The Künneth

theorem allows us to deduce the m = 1 result for A = ⊕IZT , where I is a finite indexing set, and transfinite

induction allows us to deduce the result even when I is infinite. Use of the Serre spectral sequence applied

to path-space fibrations allows us to deduce the result for arbitrary m. Finally, an arbitrary T -local A, has

a presentation of the form 0 → ⊕JZT → ⊕IZT → A→ 0, and the result follows by use of the Serre spectral

sequence applied to the fibration K(⊕IZT ,m) → K(A,m) → K(⊕JZT ,m+ 1).

From now on, we concentrate on the construction of completions of nilpotent spaces, since the construction

of localisations is similar, but slightly easier. We refer the interested reader to [MP12, Section 5.3], for

the construction of localisations. We begin by classifying the T -complete, connected, Eilenberg-MacLane

spaces:
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Lemma 2.5.6: A is T -complete iff K(A, 1) is T -complete iff K(A,m) is T -complete for all m ≥ 0.

Proof. Firstly, H̃∗(X;⊕p∈TFp) = 0 iff H̃∗(X) is a Z[T−1]-module. Moreover, A is T -complete iff Ext(Z[T−1], A) =

Hom(Z[T−1], A) = 0 iff, for all Z[T−1]-modules, B, Ext(B,A) = Hom(B,A) = 0. So, if A is T -complete,

then K(A,m) is T -complete for all m ≥ 0. We still need to prove that if K(A, 1) is T -complete, then A is T -

complete. For this, represent Z[T−1] as a sequential colimit of copies of Z. Then, we get an induced injective

homomorphism ⊕Z → ⊕Z with cokernel Z[T−1], representing the colimit. Let ϕ be a map ∨S1 → ∨S1 rep-

resenting this homomorphism on homology. Then, ϕ is an FT-equivalence, and it follows that H̃∗(Cϕ;A) = 0,

since K(A, 1) is T -complete. Therefore, Ext(Z[T−1], A) = Hom(Z[T−1], A) = 0, so A is T -complete.

Recall that BT denotes the category of T -complete abelian groups. We can deduce:

Lemma 2.5.7: If X is a BT -nilpotent space, then X is T -complete.

Proof. This now follows from Theorem 2.3.11, which tells us we can replace X by a Postnikov BT -tower, and

co-HELP, which is Lemma 2.3.13.

We can now recognise T -complete spaces, and once we can complete Eilenberg-MacLane spaces, it will be an

easy matter to complete nilpotent spaces by induction up Postnikov towers:

Lemma 2.5.8: Let A be an abelian group and n ≥ 1. Then there exists a T -completion K(A,n) →

(K̂(A,n))T .

Proof. Firstly, let I be a, possibly infinite, indexing set, and let n ≥ 2. Then, the homotopy fibre of

K(⊕IZ, n) → K( ̂(⊕IZ)T , n) is equal to K(Ext(Z[T−1],⊕IZ), n− 1), which has homology groups which are

Z[T−1]-modules, by Theorem 2.5.5. Therefore, H̃∗(Fϕ;Fp) = 0, for all p ∈ T . Applying the Serre spectral

sequence, we see that ϕ is an FT -equivalence to a T -complete space, by Lemma 2.5.7, and, therefore, a

T -completion.

For arbitrary A and n ≥ 1, we consider an exact sequence 0 → ⊕JZ → ⊕IZ → A → 0. We get a fibration

K(A,n) → K(⊕JZ, n+1) → K(⊕IZ, n+1), and we define the T -completion ψ : K(A,n) → K̂(A,n)T , to be

the homotopy fibre of the T -completions constructed in the previous paragraph. Then, ψ is an FT -equivalence

by the Zeeman comparison theorem, Theorem 2.5.1, and K̂(A,n)T is T -complete, by Lemma 2.5.7.

We can now prove:

Theorem 2.5.9: If X is a nilpotent space, then there exists a T -completion X → X̂T .

Proof. As in the proof of Lemma 2.5.8, we can define the T -completion of Xn+1, which lives in a fibre

sequence of the form Xn+1 → Xn → K(A,m), with m ≥ 2, to be the homotopy fibre of the T -completions

of Xn and K(A,m), which exist, by induction.
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This inductive construction of localisations and completions allows us to study their algebraic properties,

via induction up towers. For example, arguments similar to those of Section 2.4, can be used to prove that

a nilpotent space is T -local iff its homology groups are T -local iff its homotopy groups are T -local. More

generally, we have the following two results, whose proofs can be found in [MP12]:

Theorem 2.5.10: For a nilpotent space X, the following properties of a map ϕ : X → Y , where Y is a

connected T -local space, are equivalent:

i) ϕ is a T -localisation,

ii) ϕ∗ : πn(X) → πn(Y ) is a T -localisation for all n ≥ 1,

iii) ϕ∗ : Hn(X) → Hn(Y ) is a T -localisation for all n ≥ 1.

iv) ϕ∗ : [Y,Z] → [X,Z] is a bijection for all T -local spaces Z.

Proof. This is [MP12, Theorem 6.1.2].

Theorem 2.5.11: If ϕ : X → Y is a T -completion of a nilpotent space, then, for every n ≥ 1, there is a

splittable exact sequence:

1 → ETπn(X) → πn(Y ) → HTπn−1(X) → 1

such that the composite πn(X) → ETπn(X) → πn(Y ) is ϕ∗. Moreover, a nilpotent space is T -complete iff its

homotopy groups are T -complete.

Proof. This is [MP12, Theorem 11.1.2].



Chapter 3

A double coset formula for the genus

of a nilpotent group

Abstract: We derive double coset formulae for the genus and extended genus of a finitely generated

nilpotent group G, using the notions of bounded and bounded above automorphisms of
∏
GS, which are

defined relative to a fixed fracture square for G.

Assume, in this introductory paragraph, that all groups in sight are finitely generated and nilpotent, and

if, in addition, a group is torsion free, we refer to it as an N -group. Given a finitely generated nilpotent

group, there are fracture theorems which exhibit G as a pullback of its rational and p-local parts, or as

a pullback of its rational and p-complete parts, [MP12, Theorem 7.2.1 ii), Theorem 12.3.2]. However, in

general, knowing the p-localisations of a group is not sufficient to determine its isomorphism class, [PH75, pg.

32], and, therefore, the notion of the genus of G arises, defined as the set of isomorphism classes of groups,

H, such that Hp
∼= Gp for all p. Similarly, there is a notion of the adelic genus of G, defined as the set

of isomorphism classes of groups, H, such that ZpH ∼= ZpG, for all p, and H0
∼= G0, where ZpG is the

p-adic completion of G, and G0 is the rationalisation of G. Clearly, the genus is contained within the adelic

genus. What is known about the (adelic) genus, in general? Well, perhaps surprisingly, it is known that

the adelic genus is a finite set, and, therefore, so is the genus. In fact, this result was a key step in proving

a theorem of Pickel, [Pic71, Theorem pg. 327], and we briefly outline the story below. We begin with a

couple of definitions. Two groups, G and H, are said to be commensurable if there are subgroups G1 and

H1 of finite index in G and H, respectively, such that G1
∼= H1. Two groups, G and H, are said to have

isomorphic finite quotients if whenever F is a finite group, there exists a surjective homomorphism G → F

iff there exists a surjective homomorphism H → F . We have the following two facts, both of which follow,

after a little work to set up the theory, from the relevant definitions. Firstly, G and H have isomorphic finite

quotients iff for every prime p, ZpG and ZpH are isomorphic, [Pic71, Lemma 1.2]. Secondly, if G and H

37
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are N -groups, then G and H are commensurable iff G0 = H0, [Mal49]. The main result of [Pic71] is now

that the set of isomorphism classes of groups with isomorphic finite quotients to G is finite. Previously, in

unpublished work, Borel had shown that if H has isomorphic finite quotients to G, then H lies in one of only

finitely many commensurability classes, [Pic71, Theorem 3.1]. Therefore, after a little work to reduce to the

torsion-free case, Pickel is able to reduce the problem to showing that the adelic genus of an N -group G is

finite. An N -group G can be studied by considering associated Lie algebras, and the adelic genus can then be

attacked with the theory of arithmetic groups, as developed by Borel in [Bor63], thereby completing the proof

of the theorem. We also have notions of genus in the theory of nilpotent spaces, and we will discuss these

some more in Subsection 3.1.1, along with their associated double coset formulae. More recently, in [HY17],

members of the same genus of G were viewed as an example of conjugate objects in an ∞-category, and,

in the case of a finite partition of the set of primes, a double coset formula for the genus was derived as an

application of a general formula for calculating conjugates in an ∞-category.

3.1 Introduction

Let T, S and, for each i in some indexing set I, Ti be sets of primes such that T = ∪iTi and Ti ∩ Tj = S

for all i ̸= j. Suppose also that T ̸= S. Recall that an fZT -nilpotent group is a nilpotent group which can

be represented by a central series with quotients that admit the structure of finitely generated ZT -modules.

Throughout, we let G be an fZT -nilpotent group and consider a fixed reference diagram:

G
∏
GTi

GS (
∏
GTi

)S
∏
GS

(ψi)

σ ϕ

∏
ϕi

ω π̃

where each ψi is a localisation at Ti, ϕ is a localisation at S, σ is a localisation at S, ϕi is the unique

localisation at S such that ϕiψi = σ, ω is the localisation of (ψi) and π̃ is the unique map making the triangle

on the right commute. It follows from these definitions that π̃ω = ∆.

The purpose of this chapter is to derive double coset formulae for the genus and extended genus of G, and

we begin by recalling the relevant definitions from [MP12]:

Definition 3.1.1: i) the genus of G is the set of isomorphism classes of fZT -nilpotent groups H such that

for every i ∈ I, HTi
∼= GTi ,

ii) the extended genus of G is the set of isomorphism classes of T -local nilpotent groups H such that for every

i ∈ I, HTi
∼= GTi

.

We remark that these definitions depend on G being fZT -nilpotent, and the sets of primes Ti. From this

point of view, the genus should really be referred to as the {Ti}-genus, although we will not use this notation



CHAPTER 3. A DOUBLE COSET FORMULA FOR THE GENUS 39

in this chapter, since the sets of primes are fixed. The fact that the extended genus is a set is a consequence

of the fracture theorem, [MP12, Theorem 7.2.1 ii)], for T -local nilpotent groups.

In [MP12, Section 7.5], a map was defined which sends an automorphism α ∈
∏
Aut(GS) to the pullback of

α ◦
∏
ϕi along ∆, and it was claimed that this map was a surjection onto the extended genus of G. However,

it is not necessarily true that the image of this map is contained within the extended genus of G. To see this

consider the following fracture square for Z, where the product is indexed over the natural numbers, pi is the

ith prime number, and each of the undefined maps is the inclusion sending 1 to 1:

Z
∏

Z{pi}

Q
∏

Q

(ψi)

σ
∏
ϕi

∆

Consider the automorphism α =
∏
pi of

∏
Q, where pi also denotes multiplication pi. Then the image of

α ◦
∏
ϕi consists of elements (qi) ∈

∏
Q such that if qi =

ai
bi

with ai, bi coprime, then ai is divisible by pi.

In particular, the image of α ◦
∏
ϕi intersects the image of ∆ only at 0. Therefore, the pullback group of

α ◦
∏
ϕi along ∆ is 0, which does not localise to Z{pi} for any i.

Nevertheless, this example turns out to be instructive. Suppose, instead, that α =
∏
(ui

vi
) with ui and vi

coprime non-zero integers. Suppose that α is ‘bounded’ in the sense that there are only finitely many primes

which divide some ui or vi. Then the induced pullback is isomorphic to Z, which is the unique abelian

group in the genus of Z. If, instead, α is only ‘bounded above’ in the sense that there are only finitely many

primes which divide some ui, then the pullback turns out to be in the extended genus of Z and the maps

ψi are localisations at Ti. In fact, we will see that the pullback group is not finitely generated unless α is

‘bounded’. Note that in the counterexample we formulated, the map α was neither ‘bounded’ nor ‘bounded

above’.

With this in mind, the purpose of this chapter will be to prove the following pair of double coset results,

relating to the genus and extended genus of G respectively:

Theorem 3.1.2: The genus of G is in 1-1 correspondence with the double coset:

Aut(GS)\Autb(
∏
iGS)/

∏
iAut(GTi)

where Autb(
∏
iGS) is the subgroup of automorphisms of the form

∏
i αi which are S-bounded, see Definition

3.4.1.

Theorem 3.1.3: The extended genus of G is in 1-1 correspondence with the double coset:

Aut(GS)\Autb.a.(
∏
iGS)/

∏
iAut(GTi

)
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where Autb.a.(
∏
iGS) is the monoid of automorphisms of the form

∏
i αi which are S-bounded above, see

Definition 3.3.1.

Here, the definitions of S-bounded and S-bounded above automorphisms, and the correct classification of

the (extended) genus are new contributions.

We will begin in Section 3.2, with a review of the results about localisations of nilpotent groups that we will

use in this chapter. Then, in Sections 3.3 and 3.4, we will derive our double coset formulae for the extended

genus and genus, respectively. We then conclude the chapter in Section 3.5, by relating our results to the

formal fracture square, and deriving a double coset formula in that context.

3.1.1 Review of other types of genus and double coset formulae

Finally, for this introductory section, we will review some other notions of genus, and corresponding double

coset formulae, that can be found in the literature. Firstly, we adopt the following definition from [MP12,

Definition 12.4.6], where recall that a subscript 0 denotes rationalisation:

Definition 3.1.4: Let G be an fZT -nilpotent group. The adelic genus of G is defined to be the set of

isomorphism classes of fZT -nilpotent groups, H, such that H0 = G0 and Ĥp = Ĝp for every p ∈ T .

We will restrict attention to the case where T is the set of all primes. In this case, Pickel has shown that

the adelic genus of a torsion free finitely generated nilpotent group is in 1-1 correspondence with a subset of

the double coset G∞
A \GA/GQ, in [Pic71, Proposition 3.2]. Our proofs of Theorems 3.1.2 and 3.1.3 will make

heavy use of the universal property of localisations; however, in the case of the adelic genus, proofs of double

coset formulae do not seem to hinge on the universal property of completion, but, instead, on the universal

property of extensions of scalars. To justify this, note that if A is abelian, then (Âp)0 is not p-complete,

but is a Q ⊗ Ẑp-module. In the nilpotent setting, the notion of an R-module is replaced by the notion of

a nilpotent R-group, [War76, Definition 10.4], and Warfield has shown that, if R is a binomial domain (eg

Q, Q̂p, Ẑp), then we can define the tensor product of a nilpotent group with R, with the universal property

that a group homomorphism from G to a nilpotent R-group H factors uniquely through G→ G⊗R, via an

R-map G⊗R→ H ( [War76, Theorem 10.14]).

Moving on to spaces, there is an entirely analogous definition of the genus and adelic genus of an fZT -

nilpotent space, and Wilkerson has derived a double coset formula for the adelic genus of a simply connected

CW-complex of finite type, in [Wil76, Theorem 3.8]. Here, Sullivan’s formal completion, [Sul05, page 76],

takes the place of the extension of scalars functor − ⊗ Ẑp. In order to generalise Wilkerson’s double coset

formula to nilpotent spaces, it would be interesting if a homotopical adjoint functor theorem, such as those

of [NRS20] or [BLV23], could be used to construct the tensor product of a nilpotent space with a ring, with

an appropriate universal property. In theory, we want that, if X is an fZ-nilpotent space, then X → X ⊗ Ẑp

would be a p-completion of X, and X → X ⊗Q would be a rationalisation.
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We are not aware of a double coset formula for the extended adelic genus, or fully general double coset formulae

for the genus or extended genus of an fZT -nilpotent space. However, the special case where I is a finite

indexing set is worth mentioning. In this case, the genus and extended genus of an fZT -nilpotent space are

the same, and the formal arguments of [MP12, Proposition 7.5.2] go through to yield a double coset formula

for both. Moreover, in [HY17], this double coset formula is derived as an application of a general formula

for calculating conjugates in an ∞-category. Finally, we remark that some other double coset formulae for

the (adelic) genus of a nilpotent group/space are claimed in [Wil76, Theorem 1.2] and [MP12, Proposition

8.5.10, Remark 12.4.8, Theorem 13.6.6], but the proofs are incorrect, or missing in detail.

3.2 Review of nilpotent groups and their localisations

In this short, introductory section, we recall some definitions and results about nilpotent groups and their

localisations which will help us on our way. The following result, which is an easy generalisation of a theorem

of Warfield, [War76, Theorem 3.25], is used repeatedly throughout this chapter:

Lemma 3.2.1: Let G be a nilpotent group of nilpotency class c, H a subgroup of G, and A a set of elements

of G such that there exists an s ∈ N such that a ∈ A =⇒ as ∈ H. Then, if g ∈ G is in the subgroup

generated by elements of A and H, gs
d ∈ H where d = 1

2c(c+ 1).

Proof. This is Lemma 2.1.16

Moving on to localisations, recall that a nilpotent group is T -local iff it is uniquely p-divisible for all p ∈ T .

Recall, also, the following definitions from [MP12]:

Definition 3.2.2: If R is a set of primes, then an R-number is a natural number which is a product of primes

not in R.

Definition 3.2.3: Let f : G→ H be a homomorphism between nilpotent groups. Then, we call f an:

i) R-monomorphism if f(g) = 1 =⇒ there is an R-number, r, such that gr = 1,

ii) R-epimorphism if, for all h ∈ H, there exists an R-number, r, such that hr ∈ im(f),

iii) R-isomorphism if it is both an R-monomorphism and an R-epimorphism.

Unsurprisingly, we have:

Lemma 3.2.4: A homomorphism between nilpotent groups, f , is an R-monomorphism/R-epimorphism/R-

isomorphism iff fR is a monomorphism/epimorphism/isomorphism, respectively.

Proof. This is [MP12, Proposition 5.5.4].

We will also use:
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Lemma 3.2.5: R-localisation preserves pullbacks.

Proof. This is [MP12, Lemma 5.5.7].

Recall that our reference group, G, is fZT -nilpotent. The next few results record some consequences of this,

starting with the observation that G is finitely T-generated in the following sense:

Definition 3.2.6: A nilpotent group G is said to be finitely T-generated if there exists a finite subset A of G

such that, for every g ∈ G, there exists a T -number, t, such that gt is in the subgroup generated by A.

Lemma 3.2.7: A nilpotent group G is finitely T-generated iff GT is fZT -nilpotent.

Proof. Firstly, if G is finitely T-generated, then the images of a finite T-generating set for G give a finite

T-generating set for GT . Conversely, if GT is finitely T-generated, we can assume that the finite T-generating

set is contained in the image of G, by Lemma 3.2.1. Then, we can form a finite T-generating set for G by

picking an element in the preimage of each element of the finite T-generating set for G. The fact that this

is a finite T-generating set for G again follows from Lemma 3.2.1. So we can assume that G is T -local, and

this case is already proved in [MP12, Proposition 5.6.5]. To sketch how the argument goes, if G is fZT -

nilpotent, it is straightforward use a central series to inductively show that G is finitely T -generated, using

Lemma 3.2.1. Conversely, if G is finitely T -generated, then it is clear that Ab(G) = G
[G,G] is an fZT -module,

and so we can use the epimorphisms Ab(G) ⊗ ... ⊗ Ab(G) → ΓiG
Γi+1G onto the quotients of the lower central

series, [CMZ17, Corollary 2.10], to conclude that the lower central series expresses G as an fZT -nilpotent

group.

Lemma 3.2.8: Let G be an fZT -nilpotent group with reference diagram as in the introduction. Then:

i) G is T -Noetherian; that is G satisfies the ascending chain condition for T -local subgroups,

ii) π̃ is a monomorphism,

iii) GTi has no (Ti − S)-torsion for all but finitely many i. Equivalently, ϕi is a monomorphism for all but

finitely many i.

Proof. i) This follows in the abelian case from the fact that ZT is Noetherian, and the general nilpotent case

follows via induction up a central series.

ii) It suffices to prove that
∏
ϕi :

∏
GTi

→
∏
GS is an S-monomorphism. This will follow from iii) and the

fact that each ϕi is an S-monomorphism,

iii) Let P = {p1, ..., pk} be a finite set of prime numbers and define:

GP = {g ∈ G| gp = 1 for some product p of primes in P}

Then GP is a T -local subgroup of G, by Lemma 3.2.1. Since G is T -Noetherian it follows that there is a

finite set of primes Q such that if gn = 1 for some n ∈ N, then gq = 1 for some product of primes in Q. Now
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suppose that Ti does not contain any primes in Q. If a ∈ GTi is such that as = 1 for some product of primes

in (Ti − S), let t1 be a Ti-number such that at1 = ψi(g) for some g ∈ G. We have that ψi(g
s) = 1 and so

there is a Ti-number t2 such that gst2 = 1. Since s is coprime to each of the primes in Q, it follows that

gt2 = 1 and, therefore, that at1t2 = 1. Since GTi is Ti-local, it follows that a = 1, as desired.

3.3 A double coset formula for the extended genus of G

Recall the notation from the reference diagram at the beginning of the introduction, which we will use

throughout the remaining sections:

G
∏
GTi

GS (
∏
GTi

)S
∏
GS

(ψi)

σ ϕ

∏
ϕi

ω π̃

The aim of this section is to show that if α =
∏
αi is an automorphism of

∏
GS , then in the pullback diagram

below:

H
∏
GTi

GS
∏
GS

(κi)

µ ∏
αiϕi

∆

κi is a Ti-localisation for all i iff α is S-bounded above in the following sense:

Definition 3.3.1: An automorphism α =
∏
αi ∈

∏
Aut(GS) is said to be S-bounded above if there exists an

S-number s such that for all i and for all gi ∈ GTi , α
−1
i ϕi(g

s
i ) ∈ im(ϕi).

From this, the double coset formula for the extended genus will follow in the expected manner. We start

with:

Lemma 3.3.2: If κi is a Ti-localisation for all i, then α is S-bounded above.

Proof. Let A be a finite T -generating set for G. Since the κi are Ti-localisations, µ is an S-localisation. It

follows that there exists an S-number s such that for all a ∈ A, σ(as) ∈ im(µ) ⊂ im(αiϕi) for all i. Since ψi(A)

is a finite Ti-generating set for GTi
, it follows from Lemma 3.2.1 that if gi ∈ GTi

, then ϕi(g
sd

i ) ∈ im(αiϕi),

where d = 1
2c(c+ 1), for c the nilpotency class of G.

For the reverse direction, we start with the following observation which does not require α to be S-bounded

above:
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Lemma 3.3.3: µ is an S-monomorphism.

Proof. By Lemma 3.2.8,
∏
ϕi is an S-monomorphism, and, therefore, so is

∏
αiϕi. The result follows since

the pullback of an S-monomorphism is an S-monomorphism, by Lemmas 3.2.4 and 3.2.5.

Lemma 3.3.4: If α is S-bounded above, then µ is an S-epimorphism, hence an S-localisation.

Proof. If x ∈ GS , then since σ is an S-localisation, there exists an S-number r such that xr ∈ im(σ) ⊂ im(ϕi)

for all i. Since α is S-bounded, there exists an S-number s such that xrs ∈ im(αiϕi) for all i. It follows that

xrs is in the image of µ by the definition of a pullback.

We now have:

Lemma 3.3.5: If α is S-bounded above, then κi is a Ti-localisation for all i.

Proof. If h ∈ H and κi(h) = 1, then µ(h) = 1 and so there exists an S-number s such that hs = 1. Write

s as a product of a Ti-number t and a product of primes in Ti, r. Then, if j ̸= i, κj(h
t) = 1, since GTj is

Tj-local and Ti ∩ Tj = S. Clearly κi(h
t) = 1, so it follows that κi is a Ti-monomorphism.

Now suppose that gi ∈ GTi
and let x = αiϕi(gi). Since µ is an S-localisation, there exists an S-number s

and h ∈ H such that xs = µ(h). Write s as a product of a Ti-number t and a product of primes in Ti, r. If

j ̸= i, then the image of αjϕj is a Tj-local subgroup of GS and so xt ∈ im(αjϕj) for all j ̸= i. Since xt is

also in im(αiϕi), it follows that g
t
i is in the image of κi by the definition of a pullback.

In order to state a double coset formula for the extended genus, we need to show that
∏
α is S-bounded

above, for α ∈ Aut(GS). In fact, we will prove the stronger result that
∏
α is S-bounded, and the reader is

invited to skip ahead and read the definition of an S-bounded automorphism in Definition 3.4.1.

Lemma 3.3.6: If α ∈ Aut(GS), then
∏
α is S-bounded.

Proof. Let A be a finite set of T -generators for G. Since σ is an S-localisation, there exists an S-number s

such that for all a ∈ A, ασ(as), α−1σ(as) ∈ im(σ). Since, for all i, σ = ϕiψi and ψi(A) is a finite set of Ti

generators for GTi
, this implies, by Lemma 3.2.1, that for all gi ∈ GTi

, αϕi(g
sd

i ) and α−1ϕi(g
sd

i ) ∈ im(ϕi),

where d = 1
2c(c+ 1) is independent of i. It follows that

∏
α is S-bounded.

It is clear than an automorphism of the form
∏
i βi ∈

∏
iAut(GTi

) also induces an S-bounded automorphism

of
∏
iGS , and we can now prove:

Theorem 3.3.7: The extended genus of G is in 1-1 correspondence with the double coset:

Aut(GS)\Autb.a.(
∏
iGS)/

∏
iAut(GTi

)
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where Autb.a.(
∏
iGS) is the monoid of automorphisms of the form

∏
i αi which are S-bounded above. The

correspondence sends an S-bounded above automorphism α to the pullback group of α ◦ (
∏
ϕi) along ∆.

Proof. We have a map from Autb.a.(
∏
iGS) to the extended genus of G, defined by sending an S-bounded

above automorphism α to the pullback group of α◦(
∏
ϕi) along ∆. The fact that the map factors through the

double coset follows from the following commutative diagram, in which all vertical maps are isomorphisms:

GS
∏
GS

∏
GTi

GS
∏
GS

∏
GTi

∆

α
∏
α

∏
αiϕi

∏
βi

∆ ∏
ααi(βi)

−1
S ϕi

where
∏
αi ∈ Autb.a.(

∏
iGS), α ∈ Aut(GS) and, for every i, βi ∈ Aut(GTi).

For surjectivity, if H is in the extended genus of G, then we can form a diagram:

H
∏
GTi

GS (
∏
GTi)S

∏
GS

(ϵi)

µ ϕ

∏
ϕi

ωH π̃

Here, each ϵi is a Ti-localisation, µ is a S-localisation, and ωH is then defined as the localisation of (ϵi).

By [MP12, Theorem 7.2.1ii)], the left hand square is a pullback, and, since π̃ is a monomorphism, by Lemma

3.2.8ii), so is the larger square with base π̃ωH . Now π̃ωH ̸= ∆, in general. Instead, it is the product of

localisations of each ϵi - that is, π̃ωH = (αi), where each αi is an automorphism of GS . Let α :=
∏
αi.

Rearranging the pullback, we see that H is isomorphic to the pullback of α−1 ◦
∏
ϕi along ∆, and α−1 is

S-bounded above by Lemma 3.3.2.

For injectivity, suppose that α =
∏
αi, β =

∏
βi are S-bounded above automorphisms and we have pullbacks:

P
∏
GTi

P
∏
GTi

GS
∏
GS GS

∏
GS

(κi)

µ ∏
αiϕi

(κ̄i)

µ̄
∏
βiϕi

∆ ∆

By uniqueness of localisations, there is an automorphism γ =
∏
γi of

∏
GTi such that γ(κi) = (κ̄i). Therefore,

since we only care about equivalence classes in the double coset we may assume that κi = κ̄i for all i. Similarly,

there is an automorphism γ
′
of GS such that γ

′
µ = µ̄, and so we can reduce to the case µ = µ̄. Now, for all

i, αiϕi and βiϕi are both the unique factorisation of µ through κi. By uniqueness of factorisation through

ϕi, we must have αi = βi, as desired.
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3.4 A double coset formula for the genus of G

The purpose of this section is to prove that if we restrict the map of Theorem 3.3.7 to the S-bounded

automorphisms, defined as follows, then its image is precisely the genus of G.

Definition 3.4.1: An automorphism α =
∏
αi ∈

∏
Aut(GS) is said to be S-bounded if there exists an

S-number s such that for all (gi) ∈
∏
GTi

, α ◦ (
∏
ϕi)(g

s
i ) ∈ im(

∏
(ϕi)) and α

−1 ◦ (
∏
ϕi)(g

s
i ) ∈ im(

∏
(ϕi)).

We begin with the following observation, which is also [MP12, Proposition 7.4.3]:

Lemma 3.4.2: If I is a finite indexing set and H is a T -local nilpotent group such that HTi
is finitely

Ti-generated for all i ∈ I, then H is finitely T -generated.

Proof. Let H0 ⊂ H1 ⊂ ... be an ascending chain of T -local subgroups of H. For each i, let κi denote a

Ti-localisation of H and let Hi
j denote the Ti-local subgroup of HTi

generated by κi(Hj). Choose an integer

N such that Hi
0 ⊂ Hi

1 ⊂ ... terminates at Hi
N for all i. Now let n ≥ N ; we claim that Hn = HN . If h ∈ Hn,

then there exists a Ti-number ti and a k ∈ HN such that κi(h
ti) = κi(k). It follows that there is a Ti-number

si such that (htik−1)si = 1. Since the set of g ∈ H such that there exists a Ti-number s such that gs ∈ HN

is a subgroup of G which contains htik−1 and k, it follows that there is a Ti-number ri such that hri ∈ HN .

Now any common factor of each of the ri lies outside of T and so there is a T -number r such that hr ∈ HN .

Since HN is T -local, it follows that h ∈ HN as desired. So H is T -Noetherian, which implies that H is finitely

T -generated.

Now suppose that H is in the image of an S-bounded automorphism, α, under the map of Theorem 3.3.7.

We consider the finite subset, F , of I consisting of i such that ϕi is not a monomorphism. Then H fits into

a diagram of the form:

H (
∏
i/∈F GTi

)× (
∏
j∈F GTj

)

P (
∏
i/∈F GTi

)× (
∏
j∈F GS)

∏
i/∈F GTi

GS (
∏
i/∈F GS)× (

∏
j∈F GS)

∏
i/∈F GS

1×(
∏

(αjϕj))

(
∏

(αiϕi))×1

∆×∆

where α =
∏
αi is S-bounded, and each of the squares is a pullback, which defines P . Consider the localisation

of the diagram at T
′
= ∪i/∈FTi. The groups in the bottom two rows are all T

′
-local. If j ∈ F , Tj ∩ T

′
= S,

so αjϕj is a T
′
-localisation. It follows that P is a T

′
-localisation of H. In light of Lemma 3.4.2, if we want

to show that H is finitely T -generated, it suffices to show that P is finitely T
′
-generated. Note also that P

is the image of an S-bounded automorphism in the extended genus of GT ′ . In this way we can reduce the

next lemma to the case where ϕi is a monomorphism for all i.
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Lemma 3.4.3: If H is the image of an S-bounded automorphism, then H is finitely T -generated.

Proof. As discussed above, we can reduce to the case where ϕi is a monomorphism for all i. Let α =
∏
αi

be an S-bounded automorphism such that we have a pullback square:

H
∏
GTi

GS
∏
GS

∏
αiϕi

∆

Let K be the T -local subgroup of H consisting of pairs (x, (gi)) with x ∈ GS , gi ∈ GTi
, such that, for all

i, αiϕi(gi) = x and x ∈ im(ϕi), say x = ϕi(ai). Then there is an injective group homomorphism K → G

sending (x, (gi)) to (x, (ai)). Since G is finitely T -generated so is K, and since α is S-bounded there exists

an S-number s such that if h ∈ H, then hs ∈ K. Consider a T -subnormal series for K:

K = K0 ⊂ K1 ⊂ ... ⊂ Km = H

If we localise at Ti, then all of the groups in the chain become finitely Ti-generated. Moreover, (
Kj+1

Kj
)Ti is

a finitely Ti-generated nilpotent group such that if k ∈ (
Kj+1

Kj
)Ti

, then ks = 1. For all but finitely many i

this implies that (
Kj+1

Kj
)Ti

is trivial. For the remaining i, (
Kj+1

Kj
)Ti

is finitely Ti-generated (in fact it is finite).

Therefore, using the fracture square [MP12, Theorem 7.2.1ii)], we see that
Kj+1

Kj
is finitely T -generated (in

fact it is finite). Inductively, it follows that H is finitely T -generated (and K is a subgroup of finite index in

H).

It remains to prove that every element of the genus is the image of an S-bounded automorphism. We start

with the following observation:

Lemma 3.4.4: If H is in the genus of G, then there is a finite subset F of I such that if T
′
= ∪i/∈FTi, then

GT ′ ∼= HT ′ .

Proof. By [PH75, Theorem I.3.3], since GS ∼= HS , there is a finitely T -generated nilpotent group P equipped

with S-isomorphisms f : P → G and g : P → H. In fact, we just need to consider the pullback:

P G

H GS

ϕS

ϕS

to get the desired maps, where ϕS denotes a localisation at S. Since G,H and P are finitely T -generated,

we can use Lemma 3.2.1 to show that there exists an S-number s such that if p ∈ ker(f) or p ∈ ker(g), then
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ps = 1 and, if g ∈ G, h ∈ H, then gs ∈ im(f), hs ∈ im(g). This implies that if we take T
′
to be the union

of the Ti which don’t contain any prime factors of s, then both f and g are T
′
-isomorphisms, which implies

the result.

We can now prove:

Lemma 3.4.5: If H is in the genus of G, then H is the image of an S-bounded automorphism.

Proof. Let F be a finite subset of I such that if T ′ = ∪i/∈FTi, then HT ′ ∼= GT ′ . Let µ : H → GT ′ and

ϵ : G → GT ′ be T
′
-localisations. Then there are unique factorisations of σ and ψi, for i /∈ F , through ϵ;

denote them by σ
′
, ψ

′

i. Note that ϕiψ
′

i = σ
′

i. Since H is finitely T -generated, we can form a global to local

fracture square, [MP12, Theorem 7.2.1 iii)], of the form:

H (
∏
i/∈F GTi)× (

∏
j∈F GTj )

GS (
∏
i/∈F GS)× (

∏
j∈F GS)

(ψ
′
iµ)×(κj)

σ
′
µ (ϕi)×(αjϕj)

∆×∆

where κj is any Tj-localisation of H and αj ∈ Aut(GS). Since F is finite, 1× (αj) is S-bounded, which can

be seen directly or via Lemma 3.5.2 of Section 3.5, as desired.

We can now prove our double coset formula for the genus of G:

Theorem 3.4.6: The genus of G is in 1-1 correspondence with the double coset:

Aut(GS)\Autb(
∏
iGS)/

∏
iAut(GTi

)

where Autb(
∏
iGS) is the subgroup of automorphisms of the form

∏
i αi which are S-bounded. The corre-

spondence sends an S-bounded automorphism α to the pullback group of α ◦ (
∏
ϕi) along ∆.

Proof. We have already shown that the correspondence is well-defined and surjective in Lemmas 3.4.3 and

3.4.5. It is injective by Theorem 3.3.7.

3.5 Relationship to the formal fracture square

So far we have phrased our results in terms of the fracture square [MP12, Theorem 7.2.1 iii)] with the diagonal

map as the base. In this section, we investigate what happens if we try to define a double coset formula

relative to the fracture square:
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G
∏
GTi

GS (
∏
GTi)S

(ψi)

σ ϕ

ω

It turns out that this fracture square only sees the genus of G, and not the whole of the extended genus. Recall

that we have previously considered ‘diagonal’ automorphisms of
∏
GS of the form

∏
αi, for αi ∈ Aut(GS).

We first define the analogue of a diagonal automorphism in Aut((
∏
GTi

)S):

Definition 3.5.1: DAut((
∏
GTi

)S) is the subgroup of Aut((
∏
GTi

)S) consisting of automorphisms α such

that, for every j ∈ I, under the identification of (
∏
GTi

)S with GTj
× (

∏
i̸=j GTi

)S determined by ϕ and any

S-localisation of GTj × (
∏
i ̸=j GTi) of the form ϕj × ϕ

′

j , α = αj × β for some automorphisms αj of GS and

β of (
∏
i ̸=j GTi

)S.

Note that the subgroup of diagonal automorphisms, DAut((
∏
GTi

)S), is independent of the choice of the

collection {ϕ′

j}j∈I . Also, note that if α is a diagonal automorphism of (
∏
GTi

)S , then there is a commutative

diagram:

(
∏
GTi

)S
∏
GS

(
∏
GTi)S

∏
GS

π̃

α
∏
αi

π̃

Since π̃ is a monomorphism, it follows that there is an injective homomorphismDAut((
∏
GTi)S) →

∏
Aut(GS).

We will now show that the image of this map is the subgroup of S-bounded automorphisms of
∏
GS . It

follows, from Lemma 3.3.6, that Aut(GS) defines a subgroup of DAut((
∏
GTi)S).

Lemma 3.5.2: An automorphism α ∈
∏
Aut(GS) is the image of a diagonal automorphism β iff α is

S-bounded.

Proof. First suppose that α is the image of a diagonal automorphism β. Let A be a finite set of T -generators

for G. Since ϕ is an S-epimorphism, there exists an S-number s such that for all a ∈ A, βωσ(as) and

β−1ωσ(as) ∈ im(ϕ). Now ψi(A) is a finite set of Ti generators for GTi
and im(ϕi) is a Ti-local subgroup of

GS . It follows, by Lemma 3.2.1, that if gi ∈ GTi then αiϕi(g
sd

i ), α−1
i ϕi(g

sd

i ) ∈ im(ϕi), where d = 1
2c(c + 1),

for c the nilpotency class of G. Since d is independent of i, it follows that α is S-bounded as desired.

Now suppose that α is S-bounded. Let F ⊂ I be the finite subset of I such that ϕi is not a monomorphism

for i ∈ F . If i /∈ F , let Hi be the subgroup of GTi
consisting of gi such that αiϕi(gi) ∈ im(ϕi). Define unique

homomorphisms, fi, such that the following square commutes:
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∏
i/∈F Hi

∏
i/∈F GTi

∏
i/∈F GS

∏
i/∈F GS

∏
fi

(
∏
ϕi)◦ι

∏
ϕi

∏
αi

where ι is the inclusion of
∏
Hi into

∏
GTi . Since α is S-bounded, ι is an S-isomorphism. Similarly, the

image of the monomorphism f :=
∏
fi is {(gi) | ∀i α−1

i ϕi(gi) ∈ im(ϕi)} and so, since α is S-bounded, f

is also an S-isomorphism. Let ϕI/F be an S-localisation of
∏
i/∈F GTi

, so there is an induced isomorphism

(
∏
GTi)S

∼=τ
∏
i∈F GS × (

∏
i/∈F GTi)S induced by ϕ and (

∏
i∈F ϕi)× ϕI/F . Since the vertical arrows in the

diagram below are S-localisations, there is a unique map fS making the diagram commute:

∏
i/∈F Hi

∏
i/∈F GTi

(
∏
i/∈F GTi

)S (
∏
i/∈F GTi

)S

f

ϕI/F ι ϕI/F

fS

Since f is an S-isomorphism, (
∏
αi)× fS defines an automorphism of

∏
i∈F GS × (

∏
i/∈F GTi

)S . Noting that

the S-localisation of fi with respect to ϕi ◦ ιi and ϕi is αi, it follows that if we define β ∈ Aut((
∏
GTi

)S)

to correspond to (
∏
αi)i∈F × fS under the isomorphism, τ , given above, then β is a diagonal automorphism

whose image is α.

It is now an easy matter to reformulate our double coset formula for the genus of G in terms of the formal

fracture square:

Theorem 3.5.3: There is a 1-1 correspondence between the genus of G and the double coset:

Aut(GS) \ DAut((
∏
GTi

)S) /
∏
Aut(GTi

)

The correspondence sends a diagonal automorphism α to the pullback group of αϕ along ω.

Proof. By Theorem 3.4.6 and Lemma 3.5.2, it is immediate that there is a 1-1 correspondence between the

double coset and the genus of G, sending α to the pullback group of
∏
αiϕi along ∆. This is equivalent to

sending α to the pullback group of αϕ along ω, since π̃ is a monomorphism.

Our final result tells us that a nilpotent group, H, in the extended genus of G, is finitely T -generated iff the

S-localisation of the map H →
∏
GTi

is equivalent to ω. To make this precise, we have:

Definition 3.5.4: Define Orb(GS , (
∏
GTi

)S) to be the set of orbits of Hom(GS , (
∏
GTi

)S) under the action

of the group Aut(GS)×DAut((
∏
GTi

)S).
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If E(G) denotes the extended genus of G, then we have a map L : E(G) → Orb(GS , (
∏
GTi)S) defined

by sending H to the S-localisation of some product of Ti-localisations, (ϵi) : H →
∏
GTi

, with respect to

some S-localisation µ : H → GS , and ϕ. By definition, L(H) is independent of the choices of µ and ϵi. We

have:

Lemma 3.5.5: The genus of G is equal to L−1(Orb(ω)).

Proof. If H ∈ L−1(Orb(ω)), then the fracture square, [MP12, Theorem 7.2.1], exhibits H as the pullback of

αϕ along ω, for some diagonal automorphism α. So H is in the genus of G, by Theorem 3.5.3. Conversely,

if H is in the genus of G, then, by Theorem 3.5.3, we can view H as the pullback of αω along ϕ, for some

diagonal automorphism α, so L(H) = Orb(ω).



Chapter 4

Completion preserves fibre squares of

nilpotent spaces

Abstract: We prove that completion preserves homotopy fibre squares of nilpotent spaces. As an application,

we deduce the Hasse fracture square associated to a nilpotent space.

4.1 Introduction

Let T be a non-empty set of primes. By a functorial T -completion, we mean a pair (F, α), where F is a

functor that takes nilpotent spaces to nilpotent spaces, and α : 1 → F is a natural transformation such that,

for all X, αX : X → F (X) is a T -completion of X, see Definition 2.5.4. By a homotopy fibre square, we

mean a strictly commutative square such that the canonical map to the double mapping path space, which

we denote by N(f, g), is a weak equivalence. The main result of this chapter now states:

Theorem 4.1.1: Let f : X → A and g : Y → A be maps between connected nilpotent spaces such that N(f, g)

is connected. If we have a commutative diagram:

X A Y

X̂T ÂT ŶT

f g

f̂T ĝT

such that the vertical maps are T -completions, then the induced map N(f, g) → N(f̂T , ĝT ) is a T -completion.

It follows from Theorem 4.1.1 that any functorial T -completion preserves homotopy fibre squares of connected

nilpotent spaces, where by a homotopy fibre square we mean a strictly commutative square such that the

canonical map to the double mapping path space is a weak equivalence. For example, this applies to the

52
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functorial completions obtained via Bousfield localisation at the homology theory H∗(−;
⊕

p∈T Fp), or via

use of the Bousfield-Kan completion functor.

Similar results to Theorem 4.1.1 can be found in the literature. In particular, in [Far03, Theorem 1.1], Farjoun

proves an analogue of Theorem 4.1.1 in the case of disconnected spaces. However, one can only conclude

directly from Theorem 1.1 of [Far03] that the comparison map N̂(f, g)T → N(f̂T , ĝT ) has homotopically

discrete fibre. Our result can also be viewed as a generalisation of the connected fibre lemma of Bousfield

and Kan, [BK72a, Ch. II Lemma 4.8], which is the special case Y = Y
′
= ∗ of Theorem 4.1.1.

Our main reason for being interested in Theorem 4.1.1 is that it provides a natural context in which to deduce

the following well-known fracture theorem, sometimes known as the Hasse square:

Theorem 4.1.2: Let X be a T -local connected nilpotent space. Then any commutative square:

X X̂T

X0 (X̂T )0

ϕ̂T

ψ ϕ

(ϕ̂T )0

with ϕ̂T a T -completion and ψ, ϕ rationalisations, is a homotopy fibre square.

For the standard proof, see [DFK77, Theorem 4.4]. We explain how the Hasse square can be deduced from

Theorem 4.1.1 at the end of this chapter.

Finally, at the beginning of the chapter, we prove some basic results about the category of T -complete

nilpotent groups, thereby allowing us to clarify some misleading statements in the literature. For example,

we will show that the kernel and, if the image is normal, the cokernel of a homomorphism between T -complete

nilpotent groups are T -complete, whereas it was claimed that this is not necessarily the case on page 218

of [MP12]. It goes without saying that such a flexible result is useful when dealing with exact sequences of

T -complete nilpotent groups.

4.1.1 Counterexamples

We now say a few words about the hypotheses of Theorem 4.1.1. Consideration of the path-space fibration

associated to K(G, 1) for any G with π2(K̂(G, 1)T ) ̸= 0, shows that connectivity assumptions on N(f, g) are

necessary.

We also have the following counterexample, due to Sullivan, when the spaces involved are not nilpotent. The

counterexample is based on a non-nilpotent space Z satisfying the following properties - see [Sul05, pg. 104]

and [BK72a, Ch. VII. 3.6] for details of the construction:

1. π1(Z) =
Z
nZ , where n can be any integer dividing p− 1,
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2. π2(Z) = Ẑp,

3. πi(Z) = 0 for i ≥ 3,

4. ΩẐp ≃ Ŝ2n−1
p .

For large values of n and p, it is clear from these properties that p-completion cannot preserve the fibre

sequence:

K(Ẑp, 2) → Z → K(
Z
nZ

, 1)

4.1.2 Notation

We use throughout the notations and conventions of [MP12]. Indeed, anybody who has read [MP12] has

more than enough background to understand this chapter. For example, we have the definitions ETG :=

π1(K̂(G, 1)T ),HTG := π2(K̂(G, 1)T ). If G is abelian, then HTG and ETG are the first and zeroth derived

functors of T -adic completion, respectively. In the abelian case, HTG = Hom(Z[T−1]/Z, G) and ETG =

Ext(Z[T−1]/Z, G), which justifies the notation.

4.2 Completion and Fibre Squares

4.2.1 Properties of T -complete nilpotent groups

We begin the chapter with some basic results about the category BT of T -complete abelian groups, and

their nilpotent analogues. Let G and H be nilpotent groups equipped with central series of the same length,

{Gi} and {Hi}. Let f : G → H be a group homomorphism such that, for all i, f(Gi) ⊂ Hi, and let K

denote the kernel of f and, if the image is normal, let π : H → Q denote the cokernel of f . Then, there are

induced central series {Gi∩K} and {π(Hi)} expressing K and, if the image is normal, Q as nilpotent groups.

Recall from [BK72a, Ch. III, Lemma 5.8], that there is a singly graded spectral sequence which inductively

computes the induced central series for K and Q, starting from the maps f : Gi

Gi−1
→ Hi

Hi−1
. Its E0-page is

given by:

E0
i =

Gi
Gi−1

⊕ Hi

Hi−1

and has differential defined by d0(g, h) = (0, f(g)). It converges after finitely many pages to its E∞-page,

which is defined by:

E∞
i =

Gi ∩K
Gi−1 ∩K

⊕ Hi

(f(G) ∩Hi)Hi−1
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Of course, when the image of f is normal, the second term of the sum can be identified with π(Hi)
π(Hi−1)

. If

C is a class of abelian groups, then we call a nilpotent group, G, C-nilpotent if there exists a central series

expressing G as a nilpotent group, such that each quotient Gi

Gi−1
is in C. We have:

Lemma 4.2.1: Let C be a class of abelian groups which is closed under taking kernels and cokernels of abelian

group homomorphisms between members of C. Let f : G→ H be a group homomorphism between C-nilpotent

groups. Then, the kernel, K, and, if the image is normal, the cokernel, Q, of f are C-nilpotent. Moreover, if

{Gi} expresses G as a C-nilpotent group, then {Gi ∩K} expresses K as a C-nilpotent group. Similarly, if the

image is normal, and {Hi} expresses H as a C-nilpotent group, then {π(Hi)} expresses Q as a C-nilpotent

group.

Proof. Let {Gi} and {Hi} express G and H as C-nilpotent groups. We can reindex these central series so

that they have the same length, f(Gi) ⊂ Hi, and, for any i, either
Gi

Gi−1
or Hi

Hi−1
is 0. The result now follows

directly from the spectral sequence discussed above.

A word of caution is required regarding the hypotheses of Lemma 4.2.1. Namely, if R is a ring, we cannot, in

general, take C to be a category of R-modules, even if we require that each f : Gi

Gi−1
→ Hi

Hi−1
is an R-module

homomorphism. This is because, even though the differentials d0 are R-module homomorphisms, there is no

guarantee that the differentials d1 are R-module homomorphisms, as the following example shows:

Example 4.2.2: Suppose that {Gi}2i=0 and {Hi}2i=0 are central series of length 2 representing G and H as

nilpotent groups, and that we have a commutative diagram of group homomorphisms:

1 G1 G2 G2/G1 1

1 H1 H2 H2/H1 1

f1 f f2

Then a summand of the differential d1 can be identified with the connecting homomorphism ∂ : ker(f2) →

coker(f1) induced by the Snake Lemma, assuming that all images are normal. Taking C = C-modules, let

ψ : C → C denote complex conjugation, and consider the diagram:

0 0 C C 0

1 C C 0 0

ψ

1

1

Then the connecting homomorphism ∂ : C → C can be identified with complex conjugation which is not a

map of C-modules, even though f1 = f2 = 0 are. Note that we could swap the position of ψ with the vertical

identity map to produce a counterexample.

If C = Ẑp-modules, we can replace complex conjugation by the identity map Ẑp ⊗ Ẑp → Ẑp ⊗ Ẑp, viewing
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the domain as a Ẑp-module via multiplication in the left factor, and the codomain as a Ẑp-module via

multiplication in the right factor. Then ψ = 1 is not a map of Ẑp-modules, since Ẑp is not a solid ring, [BK72b,

Definition 2.1]. To see this, note that including Ẑp ⊗ Ẑp into Q̂p ⊗ Q̂p shows that r ∈ Ẑp is in the core

c(Ẑp) := {r ∈ Ẑp | r ⊗ 1 = 1 ⊗ r ∈ Ẑp ⊗ Ẑp} iff mr ∈ Z for some non-zero integer m. This shows that

c(Ẑp) = Zp.

Therefore, [MP12, Lemma 4.3.4] and preceding discussion are incorrect as stated, where it was claimed

that the kernel and, if the image is normal, the cokernel of a ‘Ẑp-map’ between ‘Ẑp-nilpotent groups’ are

Ẑp-nilpotent. For a counterexample, consider the map Ẑp
1⊗ϕ̂p−ϕ̂p⊗1−−−−−−−−→ Ẑp ⊗ Ẑp, which can be viewed as a

Ẑp-map with f1 = f2 = 0 as in Example 4.2.2. Its kernel is c(Ẑp) = Zp, which is not Ẑp-nilpotent, since

no non-trivial subgroup admits a Ẑp-module structure. This is because no non-trivial maps Ẑp → Ẑp factor

through the core Zp.

We note, however, that there are alternative definitions of a Ẑp-nilpotent group in the literature, such

as [War76, Definition 10.4], which is a generalisation of the notion of a Ẑp-module. For our purposes, we

have the following result:

Lemma 4.2.3: The following classes of abelian groups are closed under kernels and cokernels of abelian

group homomorphisms between members of the class:

i) the class of R-modules, where R is a solid ring (such as Z[T−1] or Fp, see [BK72b, Definition 2.1]),

ii) the class, BT , of T -complete abelian groups,

iii) the class of f ẐT -modules (that is, the class of finitely generated ẐT -modules),

iv) the class of T -complete abelian groups A, such that, for every p ∈ T , Âp is an f Ẑp-module.

Proof. i) This is the case originally dealt with in [BK72a, Ch. III, Lemma 5.8]. The key points are that, if

R is solid, then an abelian group has at most one R-module structure, and any homomorphism of abelian

groups between R-modules is an R-module homomorphism, [BK72b, 2.4].

ii) An abelian group is T -complete iff Hom(Z[T−1], A) = Ext(Z[T−1], A) = 0, [MP12, Prop. 10.1.18], and it

follows from this that the image and, therefore, the kernel and cokernel of an abelian group homomorphism

between T -complete abelian groups are T -complete.

iii) The universal property of T -completion implies that any T -complete abelian group has a ẐT -module

structure, and that this ẐT -module structure is unique. The universal property also implies that an abelian

group homomorphism between T -complete abelian groups is a ẐT -module homomorphism - in fact, that it

is a product of Ẑp-module homomorphisms between the individual p-completions. Now, an f ẐT -module is

equivalent to a q ∈ N, and a product of f Ẑp-modules which can each be generated by less than q elements.

Therefore, since each Ẑp is a PID, the kernel and cokernel of a homomorphism between f ẐT -modules are

f ẐT -modules.

iv) Similarly to iii), this follows from the fact that each Ẑp is a PID, and the fact that a homomorphism of
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abelian groups between T -complete abelian groups is a product of Ẑp-module maps between the individual

p-completions.

Remark 4.2.4: If R is a ring with the property that any abelian group homomorphism between R-modules

is an R-module homomorphism, then R is solid. To see this, consider the two R-module structures on R⊗ZR

given by multiplication on the left and right factors, and the identity map as the homomorphism of abelian

groups. The fact that the identity is an R-module homomorphism implies that r⊗Z 1 = 1⊗Z r for all r ∈ R.

Recall that a nilpotent group is T -complete iff it is BT -nilpotent, [MP12, Lemma 10.4.1]. We briefly sketch

how the argument goes. If G is BT -nilpotent, then it is T -complete due to the construction of a Postnikov

tower for K(G, 1) from a BT -central series for G, as well as the fact that such towers are T -complete via

co-HELP, [MP12, Theorem 3.3.7]. Conversely, if G is T -complete, then we can inductively T -complete any

Postnikov tower for K(G, 1). The fact that the abelian homotopy groups of the building blocks K̂(B, 2)T are

T -complete is the starting point for an inductive proof that G is BT -nilpotent, using Lemma 4.2.3ii) and the

closure of BT -nilpotent groups under central extensions, [MP12, Lemma 3.1.3]. Therefore, we have:

Corollary 4.2.5: The kernel and, if the image is normal, the cokernel of a homomorphism between T -

complete nilpotent groups are T -complete.

Before moving on to the proof of our main result, we record some further consequences of Lemmas 4.2.1 and

4.2.3 to the theory of T -complete nilpotent groups:

Lemma 4.2.6: Let G be a T -complete nilpotent group, and H a T -complete subgroup. Then:

i) there is a subnormal series H = H0 ≤ H1 ≤ ... ≤ Hk = G, where each Hi is T -complete,

ii) if G is fẐT -nilpotent, then so is H,

iii) if T is a finite set of primes and G is f ẐT -nilpotent, then G satisfies the ascending chain condition (ACC)

for T -complete subgroups,

iv) if G is a T-torsion f ẐT -nilpotent group, then G is finite.

Proof. i) We will induct on the nilpotency class of G, noting that the result is trivial if G is abelian. Let

e = G0 ≤ ... ≤ Gq = G represent G as a BT -nilpotent group. Let:

H

H ∩G1
= K0 ≤ K1 ≤ ... ≤ Kk =

G

G1

be a subnormal series as is guaranteed to exist by the inductive hypothesis. Note, for example, that H∩G1 is

T -complete since it is the kernel ofH → G
G1

. Let π : G→ G
G1

denote the quotient, and defineHi+1 = π−1(Ki).

Then, each Hi is T -complete and Hi is a normal subgroup of Hi+1. Moreover, H is a normal subgroup of

H1, since G1 is central in G.
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ii) If {Gi} represents G as an f ẐT -nilpotent group, then {H ∩Gi} represents H as an f ẐT -nilpotent group,

since a T -complete submodule of an f ẐT -module is an f ẐT -module, by the discussion in the proof of Lemma

4.2.3 iii). Here, the fact that each H ∩Gi is T -complete follows from i).

iii) When G is abelian, this follows from the fact that ẐT is Noetherian when T is a finite set of primes. In

general, we can induct on the length q of a central series, {Gi}qi=0, expressing G as an f ẐT -nilpotent group.

If {Hi}∞i=0 is an ascending chain of T -complete subgroups of G, then {Hi ∩G1} and {π(Hi)} are ascending

chains of T -complete subgroups of G1 and G
G1

, respectively, where π : G → G
G1

is the quotient map. These

chains both terminate by the inductive hypothesis, and this implies that {Hi} also terminates, as desired.

iv) Since each Ĝp is {p}-local, and G =
∏
p∈T Ĝp, we must have Ĝp = 1 for all but finitely many primes, in

order for G to be T -torsion. Therefore, we can reduce to the case where T is a finite set of primes. When

G is abelian, the ACC implies that there is a product of primes in T, r, such that rg = 0 for all g ∈ G.

Tensoring Z
rZ with a suitable ẐT -free resolution of G, we conclude that G is finite. The general case then

follows by induction.

4.2.2 Action of fundamental groups on fibres

If f : X → Y is a map between well-pointed spaces, then Ff is well-pointed and we can define an action of

π1(X) on πn(Ff) in the usual way. For more general maps f , we can define an action of π1(X) on πn(Ff)

by using a Reedy cofibrant approximation. For our proof of Theorem 4.2.9, we would like to understand how

the action on fibres behaves in a composite of fibrations:

Lemma 4.2.7: Consider a triangle of fibrations with well-pointed fibres:

X

Y Z

f h

g

Let F1, F2, F3 denote the fibres of f, h and g respectively and note that F1 is the fibre of F2 ↠ F3. Let

γ ∈ π1(X). Then there is a commutative square:

F2 F3

F2 F3

γ2 γ3

such that γ2, γ3 represent the actions of γ and f∗(γ) respectively, and the induced map, γ1 : F1 → F1, between

fibres represents the action of γ.
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Proof. Let γ also denote a loop in X representing γ. We first define γ3 in the usual way by constructing

a homotopy H : F3 × I → Y . We then define γ2 by constructing a homotopy G as in the following lifting

problem:

F2 × {0} ∪ ∗ × I X

F2 × I Y

ι∪γ

f

H◦(k×1)

G

It can then be checked that the composite F1 × I → F2 × I → X, which defines γ1, satisfies the required

properties to show that γ1 represents γ.

To figure out what this means for the actions of fundamental groups on homotopy fibres of an arbitrary

composition of maps, we consider the following diagram:

X Y Z

A B C

A× CI+ B C

A×BI+ × CI+ B × CI+ C

f g

i j

where all vertical maps are weak equivalence, the map between the top two rows is a Reedy cofibrant

approximation and the remaining maps between rows are the canonical ones. The bottom row gives a

composite of fibrations which satisfies the conditions of the Lemma 4.2.7. Using the diagram, we can conclude

that π1(Y ) acts nilpotently on Hn(Ff) iff π1(B×CI+) acts nilpotently on Hn(F1). Similar conclusions hold

for Fg and Fh, where h = gf . We also have, with notation as in Lemma 4.2.7, that π1(F2) acts trivially on

πn(F1) iff the induced map Fh → Fg induces a trivial action on its homotopy fibre, which is equivalent to

Ff .

4.2.3 Proof of the main theorem

The cocellular construction of the completion of a nilpotent space X can be modified in the following way.

First, when replacing X by a Postnikov tower, we can modify the construction to ensure that the coat-

taching maps are cofibrations, as in Theorem 2.3.12. Then, to construct the completion, we inductively use

commutative squares of the form:
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Xi X̂i

K(A,n) K̂(A,n)

and the map Xi+1 → X̂i+1 is then defined as the canonical map between homotopy fibres. Our strategy of

proof will use the refinement of the Zeeman comparison theorem due to Hilton and Roitberg, [HR76], and to

use this we will need:

Lemma 4.2.8: If f : X → Y is a map of connected spaces such that Ff is connected and π1(X) acts

nilpotently on π∗(Ff), then π1(Y ) acts nilpotently on H∗(Ff).

Proof. This is [Hil76, Corollary 2.2], but we will also give a direct proof using the tools we already have

available. Firstly, we can assume that X and Y are well-pointed and have the homotopy type of a CW

complex. Using Theorem 2.3.11, we can replace f by a relative Postnikov tower for f . Since Ff is connected,

inspection of the proof shows that we can assume all cocells have coattaching maps of the form, Xi → K(A,n)

with n ≥ 2. We will inductively prove that π1(Y ) acts nilpotently on the homology of the fibres, Fi, of the

maps d : Xi → X0 = Y . This can be shown by applying Lemma 4.2.7, and subsequent discussion, to the

composites:

Xi+1

Xi Y

Here, we assume that π1(Y ) acts nilpotently on H∗(Fi), and we know that π1(Fi) acts trivially on the

homology of the fibre of Fi+1 ↠ Fi, since this is a principal fibration, and π1(Fi+1) → π1(Fi) is surjective.

Therefore, an application of the Serre spectral sequence shows that π1(Y ) acts nilpotently on H∗(Fi+1).

In particular, the lemma holds if f : X → Y is a map of nilpotent spaces inducing a surjection on fundamental

groups.

We can now begin the proof of our main theorem, starting with the following special case:

Theorem 4.2.9: Let f : X → A and g : Y → A be maps between connected nilpotent spaces such that N(f, g)

is connected. If we have a commutative diagram:
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X A Y

X̂T ÂT ŶT

f g

f̂T ĝT

such that the vertical maps are T -completions, then the induced map N(f, g) → N(f̂T , ĝT ) is a T -completion.

Proof. Via a straightforward diagram chase, we can reduce to the case where A is the limit of a Postnikov

tower with coattaching maps, Ai → K(B,m) (m ≥ 2), which are cofibrations, and the T -completion A→ ÂT

is as described at the beginning of Subsection 4.2.3. We define a filtration of P := N(f, g) by pullbacks Pi:

Pi (A×A)×Ai×Ai
A
I+
i

X × Y A×A

and let Qi denote the pullbacks in the corresponding filtration of Q := N(f̂T , ĝT ). Observe that we have

maps Pi+1 → Pi which fit into a larger diagram of pullbacks as shown below:

Pi+1 A2 ×A2
i+1

A
I+
i+1 A

I+
i+1 PK(B,m)I+

Pi A2 ×A2
i
A
I+
i A2

i+1 ×A2
i
A
I+
i (PK(B,m))2 ×K(B,m)2 K(B,m)I+

X × Y A2

Here, the inclusion I∧{0, 1}+∪{0}+∧I+ → I∧I+, where I has basepoint 1, is homeomorphic to the inclusion

S1 → D2 ∼= I ∧ S1, and so the right hand vertical map is homeomorphic to PΩK(B,m) → ΩK(B,m).

We have maps Pi → Qi and we will inductively show that they are T -completions. Since P0 = X × Y , the

base case holds by assumption. Assume that Pi → Qi is T -completion. Comparing the diagram above with

the corresponding diagram for Q, we have a commutative square:

Pi Qi

ΩK(B,m) Ω ̂K(B,m)T

and the induced map between homotopy fibres is the map Pi+1 → Qi+1.
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The Zeeman comparison theorem, or more specifically a refinement due to Hilton and Roitberg, [HR76], can

now be used either because m > 2 and so the base space is simply connected, or because m = 2 and Lemma

4.2.8 implies that B and ETB act nilpotently on the homology of the respective fibres. For the left hand

fibration, this follows since P being connected implies that Pi is connected and π1(Pi) → B is surjective.

This is because if Pi were disconnected, then consideration of the fibre sequence Pi+1 → Pi → ΩK(B,m)

shows that Pi+1 would also be disconnected, and similarly for Pi+2, ..., P . For the right hand fibration, we

are assuming that Pi → Qi is T -completion. Therefore, π1(Qi) → ETB is surjective, since ET is right exact.

Therefore, we have that Pi+1 → Qi+1 is an FT -equivalence. We can also use this filtration of Q to show

that the homotopy groups of Qi+1 are T -complete, using Lemma 4.2.3, as well as the closure of T -complete

nilpotent groups under extensions, [MP12, Corollary 10.4.5], and so Qi+1 is T -complete, by [MP12, Theorem

11.1.1], and Pi+1 → Qi+1 is T -completion as desired.

4.2.4 Fracture Theorem as a Consequence

In order to deduce the fracture theorem as a corollary of our results, we first need to show that the homotopy

pullback in question is connected. This is the content of the following lemma:

Lemma 4.2.10: If G is a nilpotent group, then the function φ : ETG×G0 → (ETG)0, defined via composition

with (g, h) → gh−1, is surjective.

Proof. We first assume that G is abelian. Let J denote the image of φ, and P denote the kernel of φ, which

is just the evident pullback. We will first show that J is rational. Since J is a subgroup of (ETG)0, we have

HTJ = 0. Therefore, we have a short exact sequence:

0 → ETP → ETG→ ETJ → 0

The universal property of the pullback implies that the first map is split surjective. It follows that J is T -local

and ETJ = HTJ = 0. Therefore, J is rational by [MP12, Proposition 10.4.7 iii) and Proposition 10.1.11].

Now φ0 is surjective and factors through J , so J = (ETG)0 and φ is surjective.

The result for general nilpotent groups G can now be proven inductively on the nilpotency class of G,

using [MP12, Lemma 7.6.1]. A key point is that the image of ETZ(G) in ETG is a central subgroup – this

can be seen from the Postnikov tower construction of completion applied to the upper central series of G.

Finally, we give the proof of the fracture theorem that we have been building toward:

Theorem 4.2.11: Let X be a T -local nilpotent space. Then any commutative square:
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X X̂T

X0 (X̂T )0

ϕ̂

ψ ϕ

ϕ̂0

with ϕ̂ a T -completion and ψ, ϕ rationalisations, is a homotopy fibre square.

Proof. We can assume that ϕ is a fibration. Then, by Lemma 4.2.10, the pullback P is connected and we

have a comparison map f : X → P . By Theorem 4.2.9, applying functorial rationalisation and completion

shows that f0 and f̂T are weak equivalences, respectively. It follows that H̃∗(Cf ;Q) = H̃∗(Cf ;
⊕

p∈T Fp) = 0.

Therefore, H̃∗(Cf) is local away from T and has trivial rationalisation. Moreover, H̃∗(Cf) is T -local, since

X and P are. Therefore, H̃∗(Cf) = 0 and f is a homology isomorphism between connected nilpotent spaces,

so must be a weak equivalence.



Chapter 5

Localisations and completions of

nilpotent G-spaces

Abstract: We develop the theory of nilpotent G-spaces and their localisations, for G a compact Lie group,

via reduction to the non-equivariant case using Bousfield localisation. One point of interest in the

equivariant setting is that we can choose to localise or complete at different sets of primes at different fixed

point spaces – and the theory works out just as well provided that you invert more primes at K ≤ G than at

H ≤ G, whenever K is subconjugate to H in G. We also develop the theory in an unbased context, allowing

us to extend the theory to G-spaces which are not G-connected.

5.1 Introduction

The purpose of this chapter is to develop the theory of localisations and completions of nilpotent G-spaces at

sets of primes, where G is a compact Lie group. The main reference for the equivariant theory is [M+96, Ch.

II], which itself is a summary of the older papers [MMT82] and [May82], where it was explained how the

foundations of the theory could be developed using the same arguments as in the non-equivariant setting,

with some additional complications when G is compact Lie rather than just finite. Our approach is slightly

different, in that we use the theory of Bousfield localisation to deduce the foundations of the theory from

the non-equivariant case. This approach leads to fewer difficulties in the compact Lie case, and allows us to

use a more general definition of a nilpotent G-space than in [M+96], see Definition 5.3.1. For example, we

prove that a nilpotent G-space X is p-complete iff all homotopy groups of the form πi(X
H) are p-complete.

This fact was proved in [May82, Theorem 2], but only under the assumption that, for fixed i, the nilpotency

classes of πi(X
H), as H varies, have a common bound.

Another contribution of this chapter is that we allow the set of primes we are localising or completing at

64
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to vary over the orbit category of G, and we show that this provides no extra difficulties provided that you

‘invert more primes’ at K ≤ G than at H ≤ G, whenever K is subconjugate to H in G - we call this property

the poset condition. For example, we could localise at p at one subgroup and complete at p at another,

where, loosely speaking, completing at p ‘inverts more primes’ than localising at p. One might ask, why

consider these localisations? In the non-equivariant setting, Bousfield proved in [Bou74, Theorem 1.1] that

all localisations at connective homology theories are equivalent to localisations with respect to eitherH(−;ZT )

or H(−;⊕p∈TFp) for some set of primes T . Therefore, in this chapter we are considering localisations at

pointwise connective homology theories, where pointwise means we choose a connective homology theory for

every closed subgroup H of G, and the localisations which satisfy the poset condition are precisely those with

the property that a G-space is local iff it is pointwise local.

We develop the theory in both a based and unbased context - with different parts of the theory working better

in each setting. For example, we derive some new fracture theorems for nilpotent G-spaces in Theorems

5.3.7 and 5.3.12, relate localisations of nilpotent G-spaces to equivariant Postnikov towers, and show that

our homological approach to the theory is equivalent to the classical cohomological appraoch of [MMT82]

and [May82], all in the based context. We use the unbased theory to extend our results on nilpotent G-spaces

to G-spaces whose fixed point spaces are disjoint unions of nilpotent spaces. This is especially pertinent in

the equivariant setting, since there are many examples of G-spaces which are non-equivariantly connected,

but which have disconnected fixed point spaces, or no possible choice of a G-fixed basepoint at all.

5.1.1 Notations and Prerequisites

We will work with the model categories of G-spaces and based G-spaces, where G is a compact Lie group,

basepoints are G-fixed, and the model structures are the Quillen or q-model structures, [MM02, Theorem

1.8]. All subgroups of G are assumed to be closed. Unless otherwise stated, we build G-CW complexes out

of the maps (GH )+ ∧Sn+ → (GH )+ ∧Dn
+ in the based context, rather than using based maps out of (GH )+ ∧Sn.

The notation [A,B] denotes homotopy classes of maps, which may be based/unbased/equivariant depending

on the context.

This chapter should be accessible to any reader who is familiar with the non-equivariant theory of nilpotent

spaces and their localisations, as well as the basics of equivariant homotopy theory.

5.2 Localisation systems

5.2.1 Bousfield localisation at the T-equivalences

In this subsection, we define localisation systems, T, as well as the notion of a T-equivalence between based

G-spaces. We develop the basic properties of the T-equivalences, and then use the Bousfield cardinality

argument to show that there exists a model structure on the category of based G-spaces, where a map is a
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weak equivalence iff it is a T-equivalence. We develop the basic properties of this model structure, including

Theorem 5.2.15 below, which is the key to deducing the equivariant theory of nilpotent G-spaces from the

non-equivariant theory.

Let P denote the poset of subsets of the set of prime numbers partially ordered by inclusion, and let O denote

the orbit category of a compact Lie group G. Let ZT denote the integers localised at T , where recall that

localising at T inverts the primes not in T . We begin with the following four important definitions, which

are followed by a more informal discussion of the definitions in the case G = C2, in Example 5.2.5.

Definition 5.2.1: A localisation system is a functor T : Oop → Pop × 1, where we denote by 1 the category

with objects 0 and 1 and a single arrow from 0 to 1.

We think of T([G/H]) as a set of primes with coefficient, where the coefficient is either 0 or 1. If we drop

the bold font on the T, then T ([G/H]) denotes only the underlying set of primes of T([G/H]). Recall that a

map of spaces is called a ZT -equivalence if it induces an isomorphism on homology with coefficients in ZT .

Similarly, a map is called an FT -equivalence if it induces an isomorphism on homology with coefficients in

Fp, for every p ∈ T . When the basepoints are nondegenerate, it is equivalent to define these equivalences

using the respective reduced homology theories instead.

Definition 5.2.2: Let T be a set of primes with coefficient and f : X → Y a map of spaces. If the coefficient

is 0, then we call f a T-equivalence if it is a ZT -equivalence. If the coefficient is 1, then we call f a

T-equivalence if it is an FT -equivalence.

Intuitively, a coefficient of 0 means we are localising at T , and a coefficient of 1 means we are completing at

T . In a similar vein, we have:

Definition 5.2.3: Let T be a set of primes with coefficient and let X be a space. If the coefficient is 0, we

say that X is T-local if it is T -local after forgetting the coefficient. If the coefficient is 1, we say that X is

T-local if it is T -complete after forgetting the coefficient.

We can now make the following definition:

Definition 5.2.4: Let T be a localisation system and f : X → Y be a map of based G-spaces. We say that

f is a T-equivalence if for all H ≤ G, fH : XH → Y H is a T([G/H])-equivalence.

Example 5.2.5: In this example, we let G = C2, and make some additional comments that might shed

further light on the above definitions. For any G-space, X, we have a map XG → Xe, and the definition of a

localisation system is chosen so that localisation at the T-equivalences ‘inverts more primes’ at [G/e], which

corresponds to Xe, than at [G/G], which corresponds to XG. Roughly speaking, one effect of this is that if

X is T-local and nilpotent, then the induced map on homotopy groups πi(X
G) → πi(X

e) will, generally,

be a map from a less local group to a more local group, which is the usual direction of map. The reverse

direction is often degenerate, for example the only map from Z[p−1, q−1] → Z[p−1] is the zero map, and the
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only map from Ẑp → Zp is the zero map, where recall that we view p-completion as ‘inverting more primes’

than p-localisation. In total, we have the following three types of localisation system:

T([G/G]) Effect of T-localisation on XG T([G/e]) Effect of T-localisation on Xe

(T, 0) T -localisation (S, 0), S ⊂ T S-localisation

(T, 0) T -localisation (S, 1), S ⊂ T S-completion

(T, 1) T -completion (S, 1), S ⊂ T S-completion

Our next task is to Bousfield localise the category of G-spaces with respect to the class of T-equivalences,

where T is a localisation system. However, to aid clarity at certain points of this section, we will consider, at

first, the more general situation of Bousfield localisation with respect to the class ofA-equivalences, as defined

below, where A is any function from the set of objects, [G/H], of the orbit category to abelian groups.

Definition 5.2.6: Let A be a function from the set of objects of the orbit category of G, or equivalently from

the set of subgroups of G, to abelian groups. A map of G-spaces, f : X → Y , is said to be an A-equivalence

if, for all subgroups H of G, fH induces an isomorphism on homology with coefficients in A([G/H]).

Note that, if T is a localisation system, then a T-equivalence is equivalent to an A-equivalence, for some

function A taking values in abelian groups of the form ZT or ⊕p∈TFp.

We will need the following minimal list of properties of the A-equivalences, where a property is pointwise if

it holds for all fixed point spaces:

Lemma 5.2.7: i) The class of A-equivalences is closed under retracts, satisfies 2-out-of-3, and every weak

equivalence is an A-equivalence,

ii) the pushout of an A-equivalence that is a pointwise h-cofibration is an A-equivalence,

iii) the colimit of a transfinite sequence of A-equivalences which are closed inclusions is an A-equivalence.

Proof. i) is easy. For ii), since taking fixed points preserves pushouts along closed inclusions, we can work

pointwise and replace the spaces with nondegenerately based ones. The result then follows from consideration

of cofibre sequences. For iii), taking fixed points preserves transfinite colimits of closed inclusions, [MM02,

Lemma 1.6], and so the result follows from the fact that homology preserves these colimits.

We can use the Bousfield-Smith cardinality argument on the A-equivalences. The argument is essentially the

same as the classical case of localising spaces with respect to homology theories, which is treated in [MP12,

Section 19.3]. The key lemma is as follows, where all cell complexes are G-cell complexes:

Lemma 5.2.8: There exists a cardinal κ with the following property: if i : A → B is the inclusion of

a subcomplex into a cell complex B which is also an A-equivalence, then, for any cell e of B, there is a
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subcomplex C of size < κ containing e such that A ∩ C → C is an A-equivalence.

Proof. Choose a regular cardinal, κ > ℵ0, with the following properties:

i) every cell of any cell complex is contained within a subcomplex of size < κ,

ii) if Z is a cell complex of size < κ, then
⊕

∗,H H∗(Z
H ;A([G/H])) has cardinality < κ,

iii) if W is any cell complex, then for any ∗ and H:

H∗(W
H ;A([G/H])) = colim<κH∗(Z

H ;A([G/H]))

where the colimit is over all subcomplexes of W of size < κ.

To start the proof, choose a subcomplex C0 of B of size < κ which contains e, so we have a map C0∩A→ C0.

By some c ∈ H∗(C0;A), we mean an element ofHn(C
H
0 ;A([G/H])) for someH and n. For each c ∈ H∗(C0;A),

its image in H∗(B;A) is the image of an element, a, in the homology of a < κ dimensional subcomplex of A,

D. Moreover, there is a < κ dimensional subcomplex E of B, containing C0 and D, such that the images of a

and c in H∗(E;A) are equal. Define C1
0 by adding such a subcomplex E to C0 for every c ∈ H∗(C0;A) - the

conditions i) - iii) above ensure that C1
0 has size < κ. So every element of H∗(C

1
0 ;A) which is in the image

of H∗(C0;A) is also in the image of H∗(C
1
0 ∩ A;A). Now if k ∈ H∗(C0 ∩ A;A) is sent to 0 in H∗(C0;A), it

is also sent to 0 in H∗(B;A) and H∗(A;A), so there is a < κ dimensional subcomplex of A, L, containing

C0 ∩ A, such that the image of k in H∗(L;A) is 0. Define C1 by adding such a subcomplex L to C1
0 , for

every k ∈ H∗(C0 ∩A;A) which is sent to 0 in H∗(C0;A). It follows that if k ∈ H∗(C0 ∩A;A) is sent to 0 in

H∗(C0;A), it is also sent to 0 inH∗(C1∩A;A). Moreover, every element ofH∗(C1;A) which is in the image of

H∗(C0;A) is also in the image of H∗(C1∩A;A). We can repeat this process to form e ∈ C0 ⊂ C1 ⊂ C2 ⊂ ...,

and we let C be the union of the Ci which still has size < κ. Since homology preserves these sequential

colimits, it follows that H∗(C ∩A;A) → H∗(C;A) is an isomorphism, as desired.

We now deduce the standard consequences of Lemma 5.2.8. Firstly, using transfinite induction, we have:

Corollary 5.2.9: A map has the RLP with respect to all inclusions of cell complexes which are A-equivalences

iff it has the RLP with respect to all inclusions of cell complexes of dimension < κ which are A-equivalences.

Proof. See [Hir03, Proposition 4.5.6].

Any map with the RLP with respect to inclusions of cell complexes that are A-equivalences is a q-fibration,

since the generating acyclic cofibrations (GH )+ ∧ (Dn)+ → (GH )+ ∧ (Dn× I)+ are inclusions of subcomplexes.

Therefore, using left properness we have:

Lemma 5.2.10: A map has the RLP with respect to all q-cofibrations which are A-equivalences iff it has the

RLP property with respect to all inclusions of cell complexes that are A-equivalences.
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Proof. See [Hir03, Proposition 13.2.1].

If we call such a map an A-fibration, then we see that an A-fibration that is an A-equivalence is a q-acyclic

q-fibration by the retract argument. Using this and the small object argument we can now conclude:

Theorem 5.2.11: There is a left proper model structure on the category of based G-spaces where the weak

equivalences are the A-equivalences, the cofibrations are the q-cofibrations and the fibrations are the A-

fibrations.

This model structure is monoidal:

Lemma 5.2.12: If i : A → B and j : C → D are cofibrations, then i□j : A ∧ D ∪ B ∧ C → B ∧ D is a

cofibration which is an A-equivalence if either i or j is an A-equivalence.

Proof. The fact that i□j is a cofibration is classical and is a consequence of the fact that G
H × G

K is G-

homeomorphic to a G-CW complex. Similarly, since (GH )K is homeomorphic to a CW-complex, by [Ill83,

Corollary 7.2] and [Bre72, Ch. VI, Corollary 2.5], we have that a cofibration is a pointwise cofibration.

Therefore, for the remaining statement concerning A-equivalences we can assume that G is the trivial group.

Note also that the cofibre of i□j is homotopy equivalent to B
A ∧ D

C . Suppose that j is an A-equivalence

and p is an A-fibration. Then i□j has the left lifting property with respect to p iff i has the left lifting

property with respect to p□j . Therefore, it suffices to show that i□j is an A-equivalence in the case where

i : (GH )+ ∧ (Sn−1)+ → (GH )+ ∧ (Dn)+ and j is an inclusion of a subcomplex which is an A-equivalence.

Since we are assuming that G is trivial, from the third sentence of this proof, the cofibre of i□j is homotopy

equivalent to Sn ∧ D
C , which has vanishing reduced homology with the required coefficients as desired.

We have the following characterisation of the fibrant objects:

Lemma 5.2.13: A based G-space Z is A-local (that is fibrant in the model structure of Theorem 5.2.11) iff

for all A-equivalences f : A→ B between cofibrant objects, the map f∗ : [B,Z] → [A,Z] is a bijection.

Proof. If for all A-equivalences f : A → B between cofibrant objects the map [B,Z] → [A,Z] is a bijection,

then it is easy to show that Z → ∗ has the right lifting property with respect to any inclusion of cell complexes

that is an A-equivalence, using the fact that inclusions of cell complexes are h-cofibrations, and so Z is A-

local by Lemma 5.2.10. On the other hand, if Z is A-local, we can assume that f is a cofibration. Considering

lifts of Z → ∗ with respect to f shows that f∗ is surjective, and considering lifts with respect to f□i, where

i is the inclusion {0, 1}+ → I+, shows that f
∗ is injective.

From now on, we return to the context of Bousfield localisation at theT-equivalences, whereT is a localisation

system. In this context, by a T-fibration etc., we mean an A-fibration, as above, for the function A defined
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by T. The next lemma is the key to deducing our results on nilpotent G-spaces from the non-equivariant

theory, and is also the first to make use of the definition of a localisation system:

Lemma 5.2.14: Let T be a localisation system. If a based G-space Z is T-local, then ZH is T([G/H])-local

for every H ≤ G.

Proof. Let f : A → B be a T([G/H])-equivalence between cofibrant spaces. Note that A and B are just

spaces, not G-spaces. Let g = 1∧ f : (G/H)+ ∧A→ (G/H)+ ∧B. We have (G/H)K+ = O([G/K], [G/H])+, and it

follows that g is a T-equivalence by Lemma 5.2.12, the fact that T is a localisation system and the following

observations:

i) if S ⊂ T , then a ZT -equivalence is a ZS-equivalence,

ii) if S ⊂ T , then an FT -equivalence is an FS-equivalence,

iii) a ZT -equivalence is an FT -equivalence.

It follows that g∗ : [(G/H)+ ∧B,Z] → [(G/H)+ ∧A,Z] is a bijection. This is equivalent to [B,ZH ] → [A,ZH ]

being a bijection, and it follows that ZH is T([G/H])-local.

Using Lemma 5.2.14, we can deduce:

Theorem 5.2.15: i) A based G-space Z is T-local iff ZH is T([G/H])-local for every H ≤ G,

ii) A map of based G-spaces X → Y is a T-localisation iff XH → Y H is a T([G/H])-localisation for every

H ≤ G.

Proof. i) For the direction we haven’t already proved, let Z be a based G-space such that ZH is T([G/H])-local

for every H ≤ G. Consider a T-localisation Z → W . Then, each map ZH → WH is a T([G/H])-equivalence

between T([G/H])-local objects, and so a weak equivalence as desired.

ii) This follows from i).

To end this subsection, we quickly give a counterexample to indicate what can happen if T is not a localisation

system. Let G = C2, and define a T-equivalence to be a map of based G-spaces, f : X → Y , such that

H∗(f
e;Z[p−1]) and H∗(f

G;Z[p−1, q−1]) are isomorphisms, where p and q are distinct primes. If T-local G-

spaces were always pointwise local, then the analogue of Theorem 5.2.15 would also have to hold. Let Z[p−1]

denote the constant coefficient system and consider the map K(Z[p−1], 1) → K(Z[p−1], 1)T. The induced

map between systems of homotopy groups would result in a commutative triangle:

Z[p−1]

Z[p−1, q−1] Z[p−1]

ϕ
1
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where ϕ denotes localisation, which is a contradiction since the bottom map has to be the zero map. Therefore,

a T-local space is not necessarily pointwise local.

5.2.2 Unbased T -localisations

The theory described in Subsection 5.2.1 goes through essentially unchanged in the unbased context. Recall

that we are using the same notation for based and unbased homotopy classes of maps. We have:

Theorem 5.2.16: Let T be a localisation system. There is a left proper, monoidal model structure on the

category of G-spaces where the weak equivalences are the T-equivalences, the cofibrations are the q-cofibrations

and the fibrations are the T-fibrations (which are defined as in Lemma 5.2.10). A G-space Z is T-local (that

is fibrant in this model structure) iff for all T-equivalences f : A → B between cofibrant objects, the map

f∗ : [B,Z] → [A,Z] is a bijection.

Proof. The existence of the left proper model structure follows from the Bousfield cardinality argument, as

in Subsection 5.2.1. If i : A → B is a cofibration and f : X → Y is a cofibration which is a T-equivalence,

then A × Y ∪ B × X → B × Y is a cofibration as in Lemma 5.2.12 and it will be a T-equivalence if

(A × Y ∪ B × X)+ → (B × Y )+ is a T-equivalence. The latter map can be identified with i+□f+, which

is a T-equivalence by Lemma 5.2.12. The characterisation of the fibrant objects now follows as in Lemma

5.2.13.

Since T is a localisation system, the arguments of Lemma 5.2.14 and Theorem 5.2.15 show:

Theorem 5.2.17: i) A G-space Z is T-local iff ZH is T([G/H])-local for every H ≤ G,

ii) A map of G-spaces X → Y is a T-localisation iff XH → Y H is a T([G/H])-localisation for every H ≤ G.

At this point, it is helpful to compare based and unbased localisations in the non-equivariant setting. In this

setting, a localisation system, T, is equivalent to a set of primes with coefficient. We have:

Lemma 5.2.18: Let Z be an unbased space. Then:

i) Z is T-local iff f∗ : [B,Z] → [A,Z] is a bijection for all T-equivalences, f : A → B, between connected

cofibrant spaces,

ii) if Z = ⊔i∈IZi, then Z is T-local iff Zi is T-local for every i. In particular, a map of spaces which induces

a bijection on connected components is a T-localisation iff each component is a T-localisation.

Proof. If f : A → B is a T-equivalence between cofibrant spaces, then f induces a bijection between the

connected components of A and B, so f is a disjoint union of T-equivalences Ai → Bi, for i in the set of

connected components of A. Now, [⊔Ai, Z] =
∏
i[Ai, Z], and i) follows. For ii), if A is connected we have

[A,⊔iZi] = ⊔i[A,Zi], and so ii) follows from i).
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Lemma 5.2.19: Let f : X → Y be a map of unbased spaces, with X non-empty. Then the following are

equivalent:

i) f is an unbased T-localisation,

ii) f is a based T-localisation for some x ∈ X,

iii) f is a based T-localisation for all x ∈ X,

iv) f+ is a based T-localisation, with respect to the adjoined basepoint +.

Proof. The key point is that if Z is a T-local based space, then it is also T-local as an unbased space.

This is a consequence of the fact that unbased homotopy classes [A,Z] are equivalent to based homotopy

classes [A+, Z], and the observation that if A→ B is a T-equivalence between cofibrant unbased spaces, then

A+ → B+ is a T-equivalence between cofibrant based spaces. Now, iii) =⇒ ii) is trivial, and ii) =⇒ i)

follows from the above. For i) =⇒ iii), let x ∈ X. Since T-localisations are preserved by composing with

weak equivalences, we can assume that X is a CW-complex and f is a cofibration. Let fT : X → XT be

a based T-localisation. Then fT is also an unbased T-localisation, since ii) =⇒ i). Therefore, there is a

weak equivalence, g, such that gf = fT, and so f is also a based T-localisation, as desired. The fact that

iv) =⇒ i) follows from ii) =⇒ i) and Lemma 5.2.18ii), and i) =⇒ iv) follows from Lemma 5.2.18ii) and

i) =⇒ iii).

Returning to the equivariant setting, we have the following consequence:

Theorem 5.2.20: Let T be a localisation system.

i) if f : X → Y is a based T-localisation, then it is also an unbased T-localisation,

ii) if f : X → Y is a map of unbased G-spaces, then f is a T-localisation iff f+ is a based T-localisation.

Moreover, if XG is non-empty, then f is a T-localisation iff f is a based T-localisation with respect to any

G-fixed basepoint iff f is a based T-localisation with respect to all G-fixed basepoints.

5.2.3 An algebraic analogue

Before moving on to the theory of nilpotent G-spaces, we record the following result, which can be viewed

as an algebraic analogue of the above theory. Recall that coefficient systems are functors hOop → Ab, and

there are free coefficient systems defined by:

Definition 5.2.21: The free coefficient system associated to the object [G/H] is defined by F[G/H]([G/K]) =⊕
hO([G/K],[G/H]) Z along with the evident definition on morphisms.

The free coefficient systems have the property that Hom[hOop,Ab](A ⊗ F[G/H],L) ∼= HomAb(A,L([G/H])),

where A is any abelian group.

Lemma 5.2.22: Let T be a localisation system and let A and B be coefficient systems such that:



CHAPTER 5. LOCALISATIONS OF NILPOTENT G-SPACES 73

i) if the coefficient of T([G/H]) is 0, then A([G/H])⊗ ZT ([G/H]) = 0 and B([G/H]) is T ([G/H])-local,

ii) if the coefficient of T([G/H]) is 1, then A([G/H]) is a Z[T ([G/H])−1]-module and B([G/H]) is T ([G/H])-

complete.

Then Exti[hOop,Ab](A,B) = 0 for all i ≥ 0.

Proof. We first claim that if T([G/H]) has coefficient 0, and n is a product of primes not in T ([G/H]), then

Exti[hOop,Ab](F[G/H] ⊗ Z/nZ,B) = 0 for all i ≥ 0. The category [hOop,Ab] has enough injectives, [Wei94,

Exercise 2.3.7], so we can calculate this by taking an injective resolution {Qi} of B. Such a resolution

is, in particular, an objectwise injective resolution of B([G/H]), and Hom[hOop,Ab](F[G/H] ⊗ Z/nZ,Qi) =

HomAb(Z/nZ,Qi([G/H])), so taking homology calculates Exti(Z/nZ,B([G/H])), which vanishes by the non-

equivariant case. Similarly, if T([G/H]) has coefficient 1, then Exti[hOop,Ab](F[G/H] ⊗ Z[T([G/H])−1],B) = 0

by [MP12, 10.1.22].

We will use this to define a Hom[hOop,Ab](−,B)-acyclic resolution, {Pi}, of A. If T([G/H]) has coefficient 0,

there is a coproduct, K[G/H], of functors of the form F[G/H] ⊗ Z/nZ, with n being a product of primes not in

T ([G/H]), such that there is a natural transformation K[G/H] → A which is a surjection at [G/H]. If T([G/H])

has coefficient 1, then there is a coproduct, K[G/H], of functors of the form F[G/H] ⊗Z[T([G/H])−1], such that

there is a natural transformation K[G/H] → A which is a surjection at [G/H]. We define P0 :=
⊕

[G/H] K[G/H],

so we have a surjection P0 → A, and P0 is Hom[hOop,Ab](−,B)-acyclic by the previous paragraph.

The key point now is that the functor P0 satisfies the conditions in i) and ii) that A does, and this follows

from the fact that T is a localisation system. In more detail, F[G/H]([G/K]) is only non-zero when there is a

map [G/K] → [G/H] in O, and then we have the following observations:

i) if S ⊂ T , then a torsion group with no T -torsion is also a torsion group with no S-torsion,

ii) if S ⊂ T , then a Z[T−1]-module is a Z[S−1]-module,

iii) a torsion group with no T -torsion is a Z[T−1]-module.

Therefore, we can inductively construct a Hom[hOop,Ab](−,B)-acyclic resolution {Pi} of A, since the kernel

of P0 → A also satisfies i) and ii) in the statement of the lemma. Using the first paragraph of the proof, we

can use this acyclic resolution to compute Exti[hOop,Ab](A,B) = 0 for all i ≥ 0, as desired.

5.3 Nilpotent G-spaces

5.3.1 The main theorems

We now move on to the theory of nilpotent G-spaces and we begin with the definition of a nilpotent G-space.

This differs from the definition given in [M+96, Ch. II] in that we do not require a common bound on

the nilpotency classes at each fixed point space. To understand this, we will show in Subsection 5.3.4 that
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any nilpotent G-space can be approximated by a weak Postnikov tower, but if we assume a common bound

on the nilpotency classes, then a nilpotent G-space can be approximated by a (strict) Postnikov tower, a

distinction which becomes important when using co-HELP to deduce theorems about nilpotent spaces, as

in [MP12, Section 3.3].

Definition 5.3.1: A based G-space X is said to be nilpotent if XH is a nilpotent space for all subgroups H

of G.

In the unbased context, we have the following definition:

Definition 5.3.2: An unbased G-space X is said to be componentwise nilpotent if for every subgroup H of

G, every component of XH is a nilpotent space.

In general, if we speak about componentwise nilpotent G-spaces we are working in an unbased context, and

if we speak about nilpotent G-spaces we are working in a based context.

By reduction to fixed point spaces, we can immediately deduce one of the most important properties of

localisations of componentwise nilpotent G-spaces:

Theorem 5.3.3: Let T be a localisation system where all the coefficients are 0. Let f : X → Y be a map

from a componentwise nilpotent G-space X to a T-local unbased G-space Y , such that for every H ≤ G, fH

induces a bijection on connected components. Then, the following are equivalent:

i) f is a T-localisation,

ii) for all H ≤ G, ∗ ≥ 1, and b ∈ XH , fH∗ : π∗(X
H , b) → π∗(Y

H , fH(b)) is a T([G/H])-localisation of

nilpotent groups,

iii) for all H ≤ G and ∗ ≥ 1, fH∗ : H∗(X
H) → H∗(Y

H) is a direct sum of T([G/H])-localisations, where the

sum ranges over the connected components of XH .

Proof. This follows from [MP12, Theorem 6.1.2], as well as Lemma 5.2.18ii).

Recall that if T is a set of primes and A is an abelian group, then ETA and HTA denote the zeroth and

first derived functors of T -completion applied to A, respectively. These functors can be extended to take

nilpotent groups as input by using the homotopy groups of completions of Eilenberg-MacLane spaces. In

the current context, we use the above definition of ETG and HTG for sets of primes with coefficient 1.

If, instead, T is a set of primes with coefficient 0, and G is a nilpotent group, we define ETG = GT and

HTG = 0. This corresponds to using the homotopy groups of localisations of Eilenberg-MacLane spaces. A

system of nilpotent groups, G, is a continuous functor from Oop to the category of nilpotent groups, and we

call such a system T-local if it is pointwise T([G/H])-local. The T-localisation K(G, 1) → K(G, 1)T specifies

a homomorphism G → ET(G) and the, up to homotopy, universal property of T-localisation implies the

following universal property:
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Lemma 5.3.4: Let G and H be systems of nilpotent groups, with H T-local. Then any homomorphism

f : G→ H factors uniquely through the T-localisation G→ ETG.

Proof. This follows from the fact that [K(G, 1)T,K(H, 1)] ∼= [K(G, 1),K(H, 1)].

If X is a nilpotent G-space, then this universal property defines a map from ETπi(X) → πi(XT) and we

have the following theorem:

Theorem 5.3.5: If X is a nilpotent G-space, then there is a natural short exact sequence:

1 → ETπi(X) → πi(XT) → HTπi−1(X) → 1

If f : X → Y is a map between componentwise nilpotent G-spaces such that each fH induces a bijection on

connected components, and HT([G/H])(πi(X
H , x)) = 0 for all H ≤ G, i ≥ 1 and x ∈ XH , then the following

are equivalent:

i) f is a T-localisation,

ii) for all i ≥ 1, H ≤ G and x ∈ XH , πi(X
H , x) → πi(Y

H , fH(x)) is a T([G/H])-localisation.

For example, the hypothesis holds if, for all H, XH
T([G/H]) is a disjoint union of fZT ([G/H])-nilpotent spaces.

Proof. This follows from [MP12, Theorem 11.1.2, Proposition 10.1.23], as well as Lemma 5.2.18.

Non-equivariantly, the fact that Ext(HTB,ETA) = 0, [MP12, Corollary 10.4.9], implies that the short exact

sequence of Theorem 5.3.5 splits, however, equivariantly the sequence does not necessarily split as the follow-

ing example shows. Take G = C2. Then, consideration of Elmendorf’s theorem, [Elm83, Theorem 1], shows

that to find a counterexample to the splitting, we can use the following counterexample to the naturality of

the splitting in the non-equivariant case. For this, we let X = K(Z[p
−1]
Z , 1), so that X̂p = K(Ẑp, 2), and a

map X → K(Ẑp, 2) is equivalent to a homomorphism Ẑp → Ẑp. Then, any non-zero homomorphism, such as

the identity, suffices to show that the splitting cannot be natural.

5.3.2 T -localisation and fibre squares

From now on, we work in a based context. In this subsection, we discuss how T-localisation interacts with

fibre sequences and homotopy pullbacks. Let N(f, g) denote the double mapping path space of f and g. We

have:

Theorem 5.3.6: Let f : X → Z and g : Y → Z be maps of nilpotent G-spaces such that N(f, g) is

G-connected. If we have a commutative diagram:
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X Z Y

X
′

Z
′

Y
′

f g

f
′

g
′

such that the vertical maps are T-localisations, then the induced map N(f, g) → N(f
′
, g

′
) is a T-localisation.

Proof. This follows from Theorem 4.2.9.

It follows that any functorial T-localisation, such as one obtained via the small object argument applied to

the model structure of Theorem 5.2.11, preserves homotopy fibre squares of nilpotent G-spaces. The special

case where Y = Y
′
= ∗ results in the connected fibre lemma.

5.3.3 Fracture Theorems

In this subsection, we move on to derive fracture squares associated to nilpotent G-spaces, a topic which

was not discussed in the classical sources for the equivariant theory. In the non-equivariant setting, we have

fracture squares relating to localisation and completion, [MP12, Theorem 8.1.3, Theorem 13.1.4], and we

would like to generalise these results to the equivariant setting, perhaps localising and completing at different

sets of primes at each fixed point space. For example, the following two squares are homotopy fibre squares

associated to a T -local nilpotent space X, where T is a set of primes containing 7:

X X̂T

X0 (X̂T )0

(5.1)

X (
∏
p∈T\{7}Xp)× X̂7

X0 (
∏
p∈T\{7}Xp)0 × (X̂7)0

(5.2)

In 5.2, we complete at 7 to illustrate to point that there are an abundance of fracture squares that we can ask

for, especially in the equivariant case. With this in mind, the following theorem subsumes all of the examples

that we are aware of:

Theorem 5.3.7: Consider a commutative square of nilpotent G-spaces:
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X Y

A B

f

ϕ ψ

g

such that, for each subgroup H of G, there are sets of primes TH , SH satisfying:

i) XH , Y H are TH-local and AH , BH are SH-local,

ii) fH is an FTH
-equivalence and gH is an FSH

-equivalence,

iii) ϕH , ψH are Q-equivalences.

Then the square is a homotopy fibre square.

Proof. Since taking fixed points detects homotopy fibre squares, we can reduce the theorem to a pointwise

statement with sets of primes T and S. In this case, the theorem follows from (5.1) and successive applications

of the pasting lemma for homotopy pullbacks, [Hir03, Proposition 13.3.15].

When T is a constant localisation system, we can derive, as in [MP12, Theorem 13.1.1], a fracture square for

homotopy classes [K,X], under certain finiteness hypotheses on K and X. In particular, K will always be

a finite based G-CW complex, by which we mean that K is built by starting with a G-fixed basepoint and

attaching finitely many cells along based maps out of G-spaces of the form (GH )+∧Sn, with n ≥ 0. In order to

give what we feel is the cleanest exposition of our main result, and the corresponding counterexample when T

is not a constant localisation system, we begin by recalling some preliminaries on homotopy pullbacks.

Definition 5.3.8: Let f : K → X be a map of G-spaces. We define [K ∧ (In)+, f ] to be the set of homotopy

classes of maps K ∧ (In)+ → X relative to the boundary K ∧ (∂In)+, where at each point on the boundary

∂In, the induced map is equal to f .

Lemma 5.3.9: Let A
i−→ B

j−→ Ci be a cofibre sequence of G-spaces, and f : Ci → X a map of G-spaces.

Then there is a natural long exact sequence of groups:

...→ [B ∧ (I2)+, fj] → [Σ2A,X] → [Ci ∧ I+, f ] → [B ∧ I+, fj] → [ΣA,X]

Moreover, the image of [Σ2A,X] in [Ci ∧ I+, f ] is central.

Proof. Modify f so that it is radially constant in a neighbourhood of the boundary of the cone. Consider the

sequence of based maps:

...→ ΩMap(A,X)
∂−→Map(Ci,X)

j∗−→Map(B,X)
i∗−→Map(A,X)
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where the spaces are given basepoints f and the constant loop to f . The fact that f is radially constant in a

neighbourhood of the boundary of the cone allows us to define a based map, which is also a weak equivalence,

Fi∗ →Map(Ci,X). The map ∂ is then induced by a comparison of the fibre sequences associated to j∗ and

Fi∗ →Map(B,X). It follows that [S1,−] takes the above sequence of maps to an exact sequence of groups,

since it does so for the homotopy fibre sequence induced by i∗. The fact that the image of π1(∂) is central

follows from [MP12, Lemma 1.4.7 v).].

Let N(f, g) denote the double mapping path space associated to maps f : X → A and g : Y → A. We will

make use of the following result on homotopy classes of maps into a homotopy pullback:

Lemma 5.3.10: Let K be a based G-CW complex. Then the natural map of pointed sets:

[K,N(f, g)] → [K,X]×[K,A] [K,Y ]

is a surjection. Suppose that f is a fibration, so that every element of [K,X]×[K,A] [K,Y ] can be represented

by a pair of maps u : K → X, v : K → Y such that fu = gv := w. Then the preimage of (u, v) is isomorphic

to the set of orbits of [K ∧ I+, w] under the right action of the group [K ∧ I+, u]× [K ∧ I+, v]. In particular,

the map is injective iff each of the functions [K ∧ I+, u]× [K ∧ I+, v] → [K ∧ I+, w] is surjective.

Proof. This follows from the same arguments as in [MP12, Proposition 2.2.2], where the result is proved in

the special case when u and v are nullhomotopic.

Next, we seek to understand how the groups [K ∧ I+, f ] behave with respect to T-localisation.

Lemma 5.3.11: Let T be a constant localisation system. Let K be a finite based G-CW complex, let X be

a nilpotent G-space, and let f : K → X be a map. Then:

i) [K ∧ I+, f ] is a nilpotent group, which is finitely T -generated (see [MP12, Definition 5.6.3]) if, for every

i ≥ 2 and H, πi(X
H) is finitely T -generated,

ii) if the coefficient of T is 0, then [K ∧ I+, f ] → [K ∧ I+, ϕTf ] is T -localisation, where ϕT is a T-localisation

of X,

iii) if the coefficient of T is 1, HTπ1(X) = 0, and, for every i ≥ 2 and H, πi(X
H) is finitely T -generated,

then [K ∧ I+, f ] → [K ∧ I+, ϕTf ] is T -completion.

Proof. This follows by induction up the CW structure on K, using Lemma 5.3.9. In more detail, part i)

follows from [MP12, Lemma 3.1.3] and the fact that a nilpotent group G is finitely T -generated iff GT is

fZT -nilpotent. Part ii) follows from [MP12, Corollary 5.4.11]. Part iii) follows from [MP12, Corollary 10.4.5],

and the condition that HTπ1(X) = 0 ensures that π2(X) → π2(XT) is T-localisation, by Theorem 5.3.5.

We can now state our main fracture theorem for homotopy classes of maps:
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Theorem 5.3.12: Let T,S, and, for each i in some indexing set I, Ti be constant localisation systems such

that T and S have coefficient 0, T = ∪iTi and Ti ∩ Tj = S, for all i ̸= j. Let K be a finite based G-CW

complex and let X be a T -local nilpotent G-space such that, if Ti has coefficient 1, then for every subgroup

H of G, HTiπ1(X
H) = 0, and for each i ≥ 2, πi(X

H) is finitely Ti-generated. Then the following diagram is

a pullback of sets:

[K,X] [K,
∏
iXTi

]

[K,XS] [K, (
∏
iXTi

)S]

Proof. The map from [K,X] to the pullback is surjective by Theorem 5.3.7 and Lemma 5.3.10. The map

is injective by Lemma 5.3.10 and Lemma 5.3.11. In more detail, to see that the surjectivity hypothesis in

the final sentence of Lemma 5.3.10 is satisfied, surjectivity tells us that we can find a map µ : K → X

projecting onto a representative (u, v) of any element of the pullback. Then we can apply Theorem 5.3.7 to

give a fracture square for K([K ∧ I+, µ], 1), and the fact that K([K ∧ I+, µ], 1) is connected tells us that the

required map is surjective, via use of Lemma 5.3.11.

Note that the fracture theorems for nilpotent groups given in [MP12, Theorem 7.2.1 ii), Theorem 12.3.2], are

both consequences of Theorem 5.3.12.

To finish this subsection, we give an example to show that the square:

[K,X] [K,XT]

[K,X0] [K, (XT)0]

need not be a pullback of sets if T is not a constant localisation system, where K is a finite based G-

CW complex and, for every H, XH is fZT ([G/H])-nilpotent. Of course, the comparison map [K,X] →

[K,XT] ×[K,(XT)0] [K,X0] is always a surjection by Theorem 5.3.7 and Lemma 5.3.10. We let G = C2,

and let T([G/G]) = ({p, q}, 1), and T([G/e]) = ({p}, 1). We let X = K(Z, n + 2)T , where Z is the constant

coefficient system to Z, and we let T denote the localisation system induced by T taking values with coefficient

0, so that XG = K(Z{p,q}, n+ 2) and Xe = K(Z{p}, n+ 2). We let K be the cofibre:

ΣSn ∧ (G+) → ΣSn ∧ (e+) → K

where the first map is induced by the constant map G→ e. The cofibre sequence implies that there is a map

of short exact sequences:
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0 [ΣK,XT]⊕ [ΣK,X0] Ẑ{p,q} ⊕Q Ẑp ⊕Q 0

0 [ΣK, (XT)0] Q̂{p,q} Q̂p 0

It follows that the map [ΣK,XT] ⊕ [ΣK,X0] → [ΣK, (XT)0] can be identified with the rationalisation

Ẑq → Q̂q which is not surjective. It follows that the square above is not a pullback of sets. In particular,

there exist maps f, g : K → X, such that fT ≃ gT and f0 ≃ g0, but f and g are not homotopic.

5.3.4 Nilpotent G-spaces and Postnikov towers

We now discuss the relationship between T-localisations of nilpotent G-spaces and towers of principal fi-

brations. The arguments of this section are similar to those of [May82], except that we derive the results

appropriate to non-constant localisation systems, and make a distinction between nilpotent G-spaces and

bounded nilpotent G-spaces, and the types of Postnikov tower they are equivalent to. First, we will define

what it means for a π-group to be B-nilpotent, where B is a class of coefficient systems. Then we will define

the analogue of Postnikov towers in the equivariant setting, and we will show that a G-space, X, is equivalent

to a weak Postnikov B-tower iff its homotopy groups are B-nilpotent π-groups, where π = π1(X). Finally,

we will show that T-local nilpotent G-spaces are equivalent to weak Postnikov BT-towers, where BT is the

class of T-local coefficient systems.

Definition 5.3.13: Let B be a class of coefficient systems of abelian groups. Let π be a coefficient system of

groups and let G be a coefficient system of groups admitting an action of π by automorphisms. We say that

G is a B-nilpotent π-group if there is a descending sequence of normal π-subgroups:

G = G0 ⊇ G1 ⊇ G2 ⊇ ...

such that:

i) π acts trivially on Gi−1

Gi
,

ii) Gi−1

Gi
∈ B,

iii) for every H, Gi−1

Gi
([G/H]) → G

Gi
([G/H]) has central image,

iv) for every H, Gi−1

Gi
([G/H]) = 0 for all but finitely many i.

Definition 5.3.14: Call a B-nilpotent π-group bounded if the filtration in Definition 5.3.13 can be replaced

by a finite filtration terminating at 1.

Definition 5.3.15: We call a G-space X B-nilpotent if it is G-connected and, for all i ≥ 1, πi(X) is a

B-nilpotent π1(X)-group. We say that a B-nilpotent G-space, X, is bounded if the homotopy groups πi(X)

are all bounded B-nilpotent π1(X)-groups.
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Note that a G-space is nilpotent iff it is A-nilpotent, where A is the class of all coefficient systems of abelian

groups. This follows from the fact that if X is a nilpotent space, then there are functorial filtrations of πi(X)

satisying the conditions of the previous definition - the lower central series when i = 1, and the filtration

induced by the augmentation ideal, {Inπi(X)}, for i ≥ 2.

Definition 5.3.16: A map of G-spaces, f : X → Y , is called a principal K(A,n)-fibration if it is the pullback

of the path-space fibration along a map k : Y → K(A,n+1). In particular, f is a fibration with fibre K(A,n).

Definition 5.3.17: Let Q be the totally ordered set consisting of pairs of natural numbers ordered by (m,n) ≤

(p, q) iff m < p or m = p and n ≤ q. A weak Postnikov B-tower is a functor Q → G–Sp, where G–Sp is the

category of G-spaces, satisfying:

i) X1,1 = ∗,

ii) Xn+1,1 → limiXn,i is a weak equivalence,

iii) The map Xn,i+1 → Xn,i is a principal K(Bn,i, n)-fibration for some Bn,i ∈ B,

iv) for every n and H, XH
n,i+1 → XH

n,i is a weak equivalence for all but finitely many i.

Definition 5.3.18: A Postnikov B-tower is a weak Postnikov B-tower such that the maps Xn+1,1 → limiXn,i

of condition ii) above are G-homeomorphisms.

We have the principal fibration lemma:

Lemma 5.3.19: Let f : X → Y be a map of well-pointed G-connected G-spaces with the homotopy type of a

G-CW complex, such that Ff ≃ K(A,n) for some coefficient system A and n ≥ 1. Then π1(X) acts trivially

on π∗(Ff) iff there is a weak equivalence X → Fk over Y , for some cofibration k : Y → K(A,n+ 1).

Proof. See Lemma 2.3.10.

Lemma 5.3.20: A G-space is B-nilpotent iff it is weakly equivalent to a weak Postnikov B-tower.

Proof. To see that weak Postnikov B-towers are B-nilpotent, it suffices to show that πn(X) is a B-nilpotent

π1(X)-group. Let Gi be the kernel of πn(X) → πn(Xn,i+1). The quotients
Gi−1

Gi
correspond to the coefficient

systems Bn,i appearing in the tower, and so these are in B by assumption. Now, π1(X) acts trivially on Gi−1

Gi

by Lemma 5.3.19, and the required inclusions are central for the same reason as in the non-equivariant case,

namely [MP12, Lemma 1.4.7 v)]. Finally, Gi−1

Gi
([G/H]) = 0 for all but finitely many i, since XH

n,i+1 → XH
n,i is

a weak equivalence for all but finitely many i.

Next assume that a G-CW complex, X, is B-nilpotent. So, for each n, we have a filtration of πn(X), {Gn
i },

satisfying the conditions of Definition 5.3.13. We define X0
n,i+1 by first attaching cells to X along all possible

maps (GH )+ ∧ Sn → X representing an element of Gn
i ([G/H]), for some H ≤ G. Then, inductively define

Xj
n,i+1, for each j ≥ 1, by attaching a cell to Xj−1

n,i+1 along every possible map (GH )+ ∧ Sn+j → Xj
n,i+1, for

any H ≤ G. Define Xn,i+1 as the union of the Xj
n,i+1. Then:
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i) πj(Xn,i+1) = πj(X) for j < n,

ii) πn(Xn,i+1) =
πn(X)
Gi

,

iii) πj(Xn,i+1) = 0 for j > n.

Moreover, we have an inclusion Xn,i → Xm,j , whenever (m, j) ≤ (n, i) in Q. Since the action of π1(X) is

trivial on each Gi−1

Gi
, each of the maps Xn,i+1 → Xn,i is equivalent to a K(Bn,i, n)-principal fibration, with

Bn,i ∈ B. To define the weak Postnikov B-tower, we keep each Xn,1 fixed, and inductively replace each Xn,i,

for i ≥ 2, using Lemma 5.3.19. Results of Waner, [Wan80, Corollary 4.14], imply that by doing this we never

leave the category of well-pointed G-spaces with the homotopy type of a G-CW complex. Unfortunately, we

could leave this category by taking inverse limits, which is why we leave each Xn,1 fixed and only require a

weak equivalence in Definition 5.3.17 ii).

If we restrict attention to bounded B-nilpotent G-spaces, such as pointwise simply connected G-spaces, then

the same proof shows:

Lemma 5.3.21: A bounded B-nilpotent G-space is weakly equivalent to a Postnikov B-tower.

As promised, we have the following definition and characterisation of T-local nilpotent spaces:

Definition 5.3.22: A coefficient system, B, is said to be T-local if K(B, 1) is a T-local G-space.

Lemma 5.3.23: A nilpotent G-space is T-local iff it is BT-nilpotent, where BT is the class of T-local coeffi-

cient systems. A G-space is a T-local bounded A-nilpotent G-space iff it is bounded BT-nilpotent.

Proof. If X is BT-nilpotent it is easily verified that all of the homotopy groups of XH are T([G/H])-local,

which implies that X is T-local. Suppose that X is T-local. Recall that we have a central π1(X)-series for

πi(X) induced by the functorial lower central series when i = 1, or the functorial augmentation ideal series

when i ≥ 2. Localising these series at T, and considering their images in πi(X), expresses each πi(X) as a

BT-nilpotent π1(X)-series, and so X is BT-nilpotent. If X is bounded A-nilpotent, then the lower central

series terminates after finitely many stages and so X is bounded BT-nilpotent.

5.3.5 Localisation at equivariant cohomology theories

We end this chapter by tying up the following loose end. Namely, in [M+96, Ch. II], localisations of nilpotent

G-spaces were defined relative to equivariant cohomology theories, and we would like to compare this to our

localisations relative to T-equivalences.

Definition 5.3.24: A map of G-spaces, f : X → Y , is a cohomology T-equivalence if for all T-local coefficient

systems A, f∗ : H∗(Y ;A) → H∗(X;A) is an isomorphism.

We have:

Theorem 5.3.25: A map of G-spaces, f : X → Y , is a T-equivalence iff it is a cohomology T-equivalence.
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Proof. If f is a T-equivalence, then, since each K(A,n) is T-local for every T-local coefficient system A, f

is a cohomology T-equivalence.

If f is a cohomology T-equivalence, then we can assume that X,Y are well-pointed. Now, Σ2f : Σ2X → Σ2Y

is a cohomology T-equivalence between pointwise simply connected G-spaces. By the first part, (Σ2f)T is

also a cohomology T-equivalence between pointwise simply connected T-local G-spaces. Simply connected

T-local G-spaces are weakly equivalent to strict Postnikov BT-towers by the results of Subsection 5.3.4, so

the equivariant analogue of co-HELP, [MP12, Theorem 3.3.7], implies that (Σ2f)T is a weak equivalence and,

therefore, that Σ2f is a T-equivalence. It follows that f is a T-equivalence.

Corollary 5.3.26: Localisation with respect to T-equivalences is equivalent to localisation with respect to

cohomology T-equivalences.



Chapter 6

Model Structures and Fibrations

In this chapter, which has the flavour of an appendix, we discuss results related to the closure properties

of the category of well-pointed spaces with the homotopy type of a CW-complex. We begin, in Section 6.1,

by reviewing the q,h, and m-model structures on the category of G-spaces, where the m-model structure

is the mixed model structure of Cole, [Col06]. In Section 6.2, we record some point-set topological lemmas

that will be useful in later sections. In Section 6.3, we derive the closure properties of the category of well-

pointed spaces of the homotopy type of a CW-complex that were used in earlier chapters. For these spaces

cohomology is represented by homotopy classes of maps into Eilenberg-MacLane spaces, which played a role

in the inductive construction of Postnikov towers, Theorem 2.3.11, albeit indirectly via Lemma 2.3.10. In

this section, we also showcase another short proof of Stasheff’s theorem on spaces with the homotopy type

of a CW-complex in fibre sequences, the original short proof being [Sch77], one direction making use of the

classification of the m-cofibrant objects as precisely the spaces with the homotopy type of a CW complex.

In Section 6.4, we consider the equivariant generalisation of Stasheff’s thoerem, one direction of which was

proved by Waner in [Wan80]. In this section, we show that our proof from Section 6.3, which makes use

of the m-model structure, generalises to the equivariant setting to give a proof of the converse of Waner’s

theorem. On the other hand, our proof of the non-equivariant version of Waner’s theorem does not generalise

readily to the equivariant setting, and so we refer the reader to [Wan80] for the proof of the results on

G-spaces with the G-homotopy type of a G-CW complex that we needed for our inductive construction of

equivariant Postnikov towers. The issue with generalising our proof is that, non-equivariantly, the simplicial

construction of a CW-approximation functor which preserves h-fibrations and finite limits depends on the

theory of minimal fibrations of simplicial sets, which does not readily generalise to the equivariant setting.

We end the thesis in Section 6.5 by proving Theorem 6.5.9 which, roughly speaking, states that the geometric

realisation of a locally trivial map of simplicial spaces is an h-fibration. Since this theorem generalises the

proof that the realisation of a minimal fibration is an h-fibration, this section can, perhaps, be viewed as a

84
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very first step toward generalising our non-equivariant proof from Section 6.3.

6.1 The q,h and m-model structures

In this section, we’ll review the q,h, and m-model structures on the category of G-spaces, where G is a

compact Lie group. The m-model structure, [Col06], is of interest to us, since we will use it to study spaces

of the homotopy type of a G-CW complex in Sections 6.3 and 6.4 - these are precisely the spaces which are

m-cofibrant. The q-model structure needs no introduction, and we’ll just state it as a theorem:

Theorem 6.1.1: There is a proper model structure on G-spaces where:

i) the q-weak equivalences are the maps, f , such that every fH is a weak homotopy equivalence,

ii) the q-cofibrations are the retracts of relative G-cell complexes,

iii) the q-fibrations are the maps with the RLP with respect to the q-acyclic q-cofibrations.

Proof. See [MM02, Theorem 1.8].

We now move on the h-model structure, where we take all homotopies, fibrations and cofibrations to be

equivariant, unless otherwise stated:

Theorem 6.1.2: There is a proper model structure on G-spaces where:

i) the h-weak equivalences are the homotopy equivalences,

ii) the h-cofibrations are the Hurewicz cofibrations,

iii) the h-fibrations are the Hurewicz fibrations.

Here, Hurewicz cofibrations satisfy the equivariant homotopy extension property and Hurewicz fibrations

satisfy the equivariant covering homotopy property, [May99, Ch. 6 and 7]. As in the non-equivariant case,

the proof hinges on the fact that h-cofibrations are equivalent to G-NDR pairs, where a G-NDR pair is

simply an NDR-pair (X,A), defined by some (H,λ) with both H and λ equivariant. The proofs of their basic

properties are identical to the non-equivariant case, see eg [Lüc89, Lemma 1.10].

It is clear that the classes above are closed under composition and retracts, and that homotopy equivalences

satisfy 2-out-of-3. The lifting axiom follows from:

Lemma 6.1.3: Suppose that we have a commutative square, where i is an h-cofibration and p is an h-fibration:

A X

B Y

g

i p

f

Then a lift exists in the above diagram if either i or p is a G-homotopy equivalence.
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Proof. See [MP12, Proposition 17.1.4].

It remains to prove the factorisation axiom, and we take the opportunity to showcase our favourite proof from

the non-equivariant setting. Firstly, recall that we can decompose any map into an h-cofibration followed by

a homotopy equivalence using the mapping cylinder construction. Similarly, we can decompose any map into

a homotopy equivalence followed by a h-fibration using the mapping path space construction. We will modify

the second of these constructions to show that we can decompose any map into an h-acyclic h-cofibration

followed by an h-fibration. The remaining half of the factorisation axiom then follows immediately from the

mapping cylinder construction.

Lemma 6.1.4: If f : X → Y is a map between topological spaces, then f is of the form pi where i is an

h-acyclic h-cofibration and p is an h-fibration.

Proof. Define Qf to be the subspace of X × Y I × I consisting of triples (x, γ, t) such that γ(0) = f(x) and

γ(s) = γ(t) for all s ≥ t. Define a map p : Qf → Y by p(x, γ, t) = γ(1). Define a map i : X → Qf by

i(x) = (x, cf(x), 0). Then, f = pi so it is enough to show that i is an h-acyclic cofibration and p is a fibration.

In the case of i, consider the homotopy H : Qf × I → Qf defined by:

H((x, γ, s), t) = (x, γ1−t,min(s, 1− t)),

where γ1−t denotes the restriction of γ to [0, 1 − t] extended to a path from the unit interval by γ1−t(s) =

γ(1−t) for s ≥ 1−t. Then H defines a strong deformation retract of Qf onto i(X) and, since i(X) = u−1(0),

where u(x, γ, t) = t, it follows that i is an h-acyclic cofibration.

To see that p is a fibration, we will construct a path-lifting function λ : Qf ×p Y I → Qf I by defining its

adjoint λ̃ : Qf ×p Y I × I → Qf by:

λ̃((x, γ, t), τ, s) = (x, µs,t,min(t+ s, 1))

where, if t+ s ≤ 1:

µs,t(a) =


γ(a) if a ≤ t

τ(a− t) if t ≤ a ≤ t+ s

τ(s) if a ≥ t+ s

and, if t+ s ≥ 1:
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µs,t(a) =


γ(a(t+ s)) if a ≤ t

t+s

τ((a− 1)t+ as) if t
t+s ≤ a ≤ 1

For another proof of Lemma 6.1.4, see Strøm’s original proof in [Str72, Proposition 2]. This completes our

derivation of the h-model structure. Observe that it is proper since all objects are bifibrant.

Finally, we will demonstrate how the q and h-model structures can be combined to create a mixed model

structure on G-spaces, as described in the following theorem:

Theorem 6.1.5: There is a proper model structure on G-spaces where:

i) the m-weak equivalences are the q-equivalences,

ii) the m-cofibrations are the h-cofibrations of the form fi where i is a q-cofibration and f is an h-equivalence,

iii) the m-fibrations are the h-fibrations.

Following [Col06] and [MP12, Section 17.3], we will work in a more general context. Suppose that M is a

category with two model structures (Wq, Cq,Fq) and (Wh, Ch,Fh) such that Wh ⊂ Wq and Fh ⊂ Fq (and,

so, Cq ⊂ Ch). The first thing we will prove is that the mixed model structure exists:

Lemma 6.1.6: There is a model structure on M where:

i) the weak equivalences are the q-equivalences,

ii) the fibrations are the h-fibrations.

Proof. Define Cm to be the class of maps with the left lifting property with respect to all q-acyclic h-fibrations.

Clearly, these classes are closed under composition and retracts and the q-equivalences satisfy 2-out-of-3. One

of the lifting axioms is a definition.

For the first factorisation axiom, first factor f = pi where p is an h-fibration and i is an h-acyclic h-cofibration.

Then p is an m-fibration and i has the LLP with respect to Fh and, hence, with respect to Fh ∩Wq. It is

also a q-equivalence since it is an h-equivalence.

For the other factorisation axiom, first factor f = gi where i is a q-cofibration and g is a q-equivalence.

Note that i is an m-cofibration. Next factor g as g = pj where j is an m-acyclic m-cofibration and p is an

m-fibration. Then, by the two out of three property, p is an m-acyclic m-fibration and so p(ji) is our desired

factorisation.

Finally, for the remaining lifting axiom, it is enough to show that anm-acyclicm-cofibration, i, is an h-acyclic

h-cofibration. Factor i as pj where p is an h-fibration and j is an h-acyclic h-cofibration. Since i is m-acyclic,
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p is m-acyclic. Since i is an m-cofibration it has the LLP with respect to p. Hence, the retract argument

tells us that i is a retract of j and so an h-acyclic h-cofibration itself.

With the model structure demonstrated, Ken Brown’s lemma, [Hir03, Lemma 7.7.1], has the following con-

sequence:

Lemma 6.1.7: Suppose that i and j are m-cofibrations in the following diagram:

A

X Y

i j

f

i) if f is a q-equivalence, then it is an h-equivalence,

ii) if f is an h-cofibration, then it is an m-cofibration.

Proof. i) Consider the under-category (A ↓ M). Since f is an m-equivalence between m-cofibrant objects

we can factor f as pi where i is an m-acyclic m-cofibration and p has a right inverse which is an m-acyclic

m-cofibration. Now m-acyclic m-cofibrations are equivalent to h-acyclic h-cofibrations and, so, f is an h-

equivalence.

ii) Factor f as pi where i is an m-cofibration and p is an m-acyclic m-fibration, By i), p is an h-acyclic

h-fibration and so has the RLP with respect to f . Hence, the retract argument applies to show that f is an

m-cofibration.

We can use Lemma 6.1.7 to characterise the m-cofibrations:

Lemma 6.1.8: A map j : A → X is an m-cofibration iff j is an h-cofibration which can be factored as fi,

where i is a q-cofibration and f is an h-equivalence.

Proof. Suppose that j is an m-cofibration. Clearly, it is also an h-cofibration. Factor j as pi where i is a

q-cofibration and p is a q-acyclic q-fibration. Then, since all q-cofibrations are m-cofibrations, Lemma 6.1.7

applies to show that p is an h-equivalence, so we’re done.

On the other hand, suppose that j is an h-cofibration which can be factored as fi where i is a q-cofibration and

f is an h-equivalence. Factor f as pk, where p is an h-acyclic h-fibration and k is an h-acyclic h-cofibration.

Note that i and k are both m-cofibrations and p has the RLP with respect to j. Therefore, the retract

argument shows that j is an m-cofibration.

Before considering properness, it is useful to record the following definition and reformulation of the retract

argument:
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Definition 6.1.9: Let i : A → X and j : A → Y be maps. We say that i is a retract of j relative to A if

there is a commutative diagram:

A A A

X Y X

i

1

j

1

i

s r

such that rs = 1.

The retract argument can be stated as:

Lemma 6.1.10: Let i = pj and suppose that i : A → B has the LLP with respect to p. Then i is a retract

of j relative to A.

Note that if i is a retract of j relative to A, and f : A → X is a map, then the pushout of f along i is a

retract of the pushout of f along j. We can now prove:

Lemma 6.1.11: If M is right q-proper, then it is right m-proper. M is left m-proper iff it is left q-proper.

Proof. The first sentence is obvious, as is the statement that left m-properness implies left q-properness.

Therefore, suppose that M is left q-proper and that we have a pushout square where f is an m-equivalence

and i is an m-cofibration:

A X

B Y

i

f

j

g

Note that i is a retract, rel A, of the composite of a q-cofibration followed by an m-acyclic m-cofibration.

Since M is left q-proper, the pushout of a q-equivalence along either of these is a q-equivalence. Therefore,

g is the retract of a q-equivalence.

This completes the proof of Theorem 6.1.5. Specialising to the m-model structure on G-spaces, we record

the following corollary of Lemma 6.1.8:

Corollary 6.1.12: A G-space is m-cofibrant iff it has the homotopy type of a G-CW complex.

Proof. Lemma 6.1.8 implies that a G-space is m-cofibrant iff it has the homotopy type of a q-cofibrant

G-space. Then G-CW approximation, [M+96, Theorem 3.6], implies that any q-cofibrant G-space has the

homotopy type of a G-CW complex.
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6.2 Point set topological lemmas

In this section, we record some point set topological lemmas about the category of CGWH spaces that will

be used at various points in the remaining sections. Since these are not the main focus of our work, we will

refer the reader to Strickland’s notes on CGWH spaces, [Str09], for some of the proofs. We begin with a

useful criterion for recognising when a continuous bijection of CGWH spaces is a homeomorphism:

Lemma 6.2.1: If f : X → Y is a continuous bijection between CGWH spaces such that the preimages of

compact Hausdorff subspaces of Y are compact, then it is a homeomorphism.

Proof. This is [Str09, Proposition 3.17].

The following lemma is useful in various situations, as we will see in the proof of Lemma 6.2.3 below:

Lemma 6.2.2: In the category of CGWH spaces, the pullback of a quotient map is a quotient map.

Proof. This is [Str09, Proposition 2.36].

The next result is related, but not identical, to Mather’s second cube theorem, [Mat76, Theorem 25]:

Lemma 6.2.3: If we have a commutative diagram of spaces:

A1 B1

X1 Y1

A0 B0

X0 Y0

j

i

such that the bottom square is a pushout, the vertical squares are pullbacks, and the map A0 → X0 is a closed

inclusion, then the top square is a pushout.

Proof. Since i is a closed inclusion, the categorical pushout of i agrees with the usual quotient of X0 ⊔ B0,

[May99, pg.40], and, since closed inclusions are preserved by pullbacks, [Str09, Proposition 2.33], the pushout

of j is also given by the usual quotient. Therefore, we have a pullback:

X1 ⊔B1 Y1

X0 ⊔B0 Y0
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where the bottom map is a quotient. Therefore, by Lemma 6.2.2, the top arrow is also a quotient map. There

are two equivalence relations on X1⊔B1 that we care about. The first identifies u ∼1 v if u, v ∈ X1⊔B1 have

the same image in Y1. The second is the smallest equivalence relation ∼2 generated by the relations x1 ∼2 b1

whenever there exists some a1 ∈ A1 with images x1 ∈ X1 and b1 ∈ B1. We want to show both of these

equivalence relations are equal. Since x1 ∼1 b1 whenever there is such an a1, we have that u ∼2 v =⇒ u ∼1 v.

If u ∼1 v, write u0 and v0 for the images of u and v in X0 ⊔ B0. Since their images in Y0 are equal, there

is a sequence u0 = e0, e1, ..., en = v0, with n ≥ 0, of elements of X0 ⊔ B0 such that for every i < n, there is

some ai ∈ A0 such that ei and ei+1 are images of ai. It follows that each ei has the same image in Y0, which

corresponds to the image of y, where y is the image of u and v in Y1. So (ai, y) is a well-defined element of

A1, and both (ei, y) ∈ X1 ⊔B1 and (ei+1, y) ∈ X1 ⊔B1 are images of (ai, y). So u ∼2 v.

6.3 Well-pointed spaces of the homotopy type of a CW complex

In this section, we work non-equivariantly, and derive the closure properties of the category of well-pointed

spaces of the homotopy type of a CW complex that we used in our previous work. For example, we used these

results in our inductive construction of a Postnikov tower associated to a nilpotent space, since we implicitly

required that cohomology is represented by homotopy classes of maps into Eilenberg-MacLane spaces. Of

course, this is guaranteed to be true if the space has the based homotopy type of a CW complex.

We first consider well-pointed spaces, and the results we need are a consequence of the characterisation of an

h-cofibration as an NDR-pair. We begin with:

Lemma 6.3.1: The pullback of an h-cofibration along an h-fibration is an h-cofibration.

Proof. See [MP12, Lemma 1.3.1].

The next two results are [Str72, Lemmas 5 and 6].

Lemma 6.3.2: If i : A→ B and j : B → C are maps and both j and k = ji are h-cofibrations, then i is an

h-cofibration.

Proof. Firstly, i is an inclusion by verification of the universal property. Let (H,λ) and (K,µ) represent

(C,B) and (C,A) as NDR-pairs. Define µ
′
(c) = µ(c) + supt∈I λ(K(c, t)) . Define:

L(b, t) =


H(K(b, t), 1) µ

′
(b) ≤ 1

2

H(K(b, 2(1− µ
′
(b))t), 1) µ

′
(b) ≥ 1

2

Then (L, 2µ
′
) represents (B,A) as an NDR-pair.
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Lemma 6.3.3: If E,B,X are well-pointed and p is an h-fibration in the following pullback square:

P E

X B

p

Then P is well-pointed.

Proof. This is a corollary of Lemma 6.3.1 and Lemma 6.3.2.

We now turn our attention to spaces with the unbased homotopy type of a CW complex, or equivalently m-

cofibrant spaces. We will give the shortest proof we know of the following well-known, [Sch77], theorem:

Theorem 6.3.4: Let p : E → B be an h-fibration with fibre F and connected base B. If B is m-cofibrant,

then E is m-cofibrant iff F is m-cofibrant.

Paired with the results about well-pointed spaces, this explains why we are free to assume that all spaces are

well-pointed with the homotopy type of a CW complex in our inductive construction of Postnikov towers.

Since the h-model structure is proper, we can and will assume that B is already a CW-complex. Them-model

structure will play a simplifying role in the proof of Lemma 6.3.6 below. However, first, we use the fact that

geometric realisation takes Kan fibrations to h-fibrations, to prove:

Lemma 6.3.5: If E is m-cofibrant, then so is F .

Proof. Consider the square:

|Sing(E)| E

|Sing(B)| B

|Sing(p)|

≃

p

≃

Since p is an h-fibration it is a q-fibration, so Sing(p) is a Kan fibration and |Sing(p)| is an h-fibration,

by [MP12, Theorem 17.5.7] or [FP90, Theorem 4.5.25]. Since the h-model structure is proper, there is an

induced homotopy equivalence between F and |Sing(F )|, which is a CW complex.

Lemma 6.3.6: If F is m-cofibrant, then so is E.

Proof. Suppose that the n-skeleton of B is defined by attaching maps αi : ∂∆
n → B(n−1). Let ei denote the

inclusion of the cell into B(n), ei : ∆
n → B(n). Define P ∂∆

n

i to be the pullback of αi along p, and P
∆n

i to be

the pullback of ei along p. Then P
∂∆n

i ≃ ∂∆n × F and P∆n

i ≃ ∆n × F and so both are m-cofibrant. Using

Lemma 6.2.3, we have a pushout:
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⊔iP ∂∆
n

i p−1(B(n−1))

⊔iP∆n

i p−1(B(n))

Since the pullback of an h-cofibration along an h-fibration is an h-cofibration, P ∂∆
n

i → P∆n

i is an h-

cofibration. Therefore, the LHS map is an h-cofibration between m-cofibrant objects and, hence, an m-

cofibration, by Lemma 6.1.7. Therefore, the RHS is also an m-cofibration, and so, inductively, p−1(B) = E

is m-cofibrant.

6.4 Well-pointed spaces of the homotopy type of a G-CW com-

plex

The results about well-pointed spaces of Section 6.3 generalise effortlessly to the equivariant context, using

the fact that h-cofibrations are equivalent to G-NDR pairs. Therefore, the main purpose of this section is to

use the m-model structure to prove one direction of the following theorem:

Theorem 6.4.1: Let p : E → B be an h-fibration, and suppose that B has the G-homotopy type of a G-

CW complex. Then E has the G-homotopy type of a G-CW complex iff for every b ∈ B, p−1(b) has the

Hb-homotopy type of an Hb-CW complex, where Hb is the isotropy group of b.

The more difficult direction, and the direction needed to construct equivariant Postnikov towers, was proved

by Waner in [Wan80, Corollary 4.14] - namely, that if E and B have the G-homotopy type of a G-CW

complex, then each fibre has the Hb-homotopy type of an Hb-CW complex. In order to generalise the proof

we gave in the non-equivariant setting in Lemma 6.3.5, we would need an m-cofibrant replacement functor

that preserves m-fibrations and finite limits. However, non-equivariantly the construction of such a functor

used the theory of minimal fibrations of simplicial sets, a tool which we do not evidently have available in

the equivariant context.

For the converse direction, we begin with a few routine lemmas:

Lemma 6.4.2: If p : E → B× I is an h-fibration, then there is a G-homotopy equivalence over B, E0 ≃ E1,

where Et is the preimage of B × {t}.

Proof. The proof is verbatim to the non-equivariant case, [May75, Lemma 2.4].

Lemma 6.4.3: If p : E → G
H × ∆n is an h-fibration, then E is G-homotopy equivalent over G

H × ∆n to

(G×H F )×∆n, where F = p−1(1, ∗) for some ∗ ∈ ∆n.
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Proof. By Lemma 6.4.2, E is G-homotopy equivalent to p−1(GH × ∗)×∆n over G
H ×∆n. Since the preimage

of a slice is a slice, p−1(GH × ∗) = G×H p−1(1, ∗).

Since G×H H
K = G×H (H ×K ∗) = (G×H H)×K ∗ = G×K ∗ = G

K , it is easy to see that:

Lemma 6.4.4: The functor G×H− takes H-CW complexes to G-CW complexes, and satisfies G×H (X×I) =

(G×H X)× I.

If H is a subgroup of G, then G
K is an H-manifold, and so has the H-homotopy type of an H-CW complex,

by [Ill83, Corollary 7.2]. Therefore, we also have:

Lemma 6.4.5: If H is a subgroup of G, and X is a G-space with the G-homotopy type of a G-CW complex,

then X has the H-homotopy type of an H-CW complex.

We can now prove:

Theorem 6.4.6: Let p : E → B be an h-fibration such that B has the G-homotopy type of a G-CW complex,

and for every H and b ∈ B with isotropy group H, p−1(b) has the H-homotopy type of an H-CW complex.

Then, E has the G-homotopy type of a G-CW complex.

Proof. Firstly, we’ll show that we can reduce to the case where B is a G-CW complex. Let i : B̃ → B be a

G-CW approximation and consider the pullback:

Ẽ E

B̃ B

j

q p

i

Since the h-model structure is proper, both i and j are G-homotopy equivalences. If b̃ ∈ B̃, b = i(b̃) and

b̃ has isotropy group H̃, then b has isotropy group H ⊇ H̃. Therefore, by assumption, q−1(b̃) = p−1(b) has

the H-homotopy type of an H-CW complex, and so, in particular, has the H̃-homotopy type of an H̃-CW

complex. So we will assume from now on that B is a G-CW complex.

Suppose that the n-skeleton, B(n), of B is defined by attaching maps αi : G
H × ∂∆n → B(n−1). Let ei

denote the inclusion of the cell into B(n), ei : G
H × ∆n → B(n). Define P ∂∆

n

i to be the pullback of αi

along p, and P∆n

i to be the pullback of ei along p. Then, using Lemma 6.4.3, P ∂∆
n

i ≃ (G ×H F ) × ∂∆n

and P∆n

i ≃ (G ×H F ) × ∆n, where F = p−1(b) for some b ∈ B with isotropy group H - and so both are

m-cofibrant. Using Lemma 6.2.3, we have a pushout:
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⊔iP ∂∆
n

i p−1(B(n−1))

⊔iP∆n

i p−1(B(n))

Since the pullback of an h-cofibration along an h-fibration is an h-cofibration, P ∂∆
n

i → P∆n

i is an h-

cofibration. Therefore, the LHS map is an h-cofibration between m-cofibrant objects and, hence, an m-

cofibration, by Lemma 6.1.7. Therefore, the RHS is also an m-cofibration, and so, inductively, p−1(B) = E

is m-cofibrant.

Finally, we record the following analogue for principal (Π; Γ)-bundles, [ML86], which can be proven using

similar methods. This is a useful result if one wishes to view the universal principal (Π; Γ)-bundle, E(Π; Γ), as

an equivariant Eilenberg MacLane space, K(M, 0), and use the universal property of such Eilenberg-MacLane

spaces to prove a classification theorem for bundles. See [M+96, pg.55,72] and [ML86, pg. 270] for further

discussion of this perspective.

Lemma 6.4.7: If p : E → B is a numerable principal (Π; Γ)-bundle such that B has the G-homotopy type

of a G-CW complex, then E has the Γ-homotopy type of a Γ-CW complex.

Proof. Firstly, we can consider the pullback of the principal (Π; Γ)-bundle along a G-CW complex B̃ → B.

P E

B̃ B

Since numerable bundles over a base of the form B× I are of the form E0 × I, [ML86, Theorem 6], it follows

that the map P → E is a Γ-homotopy equivalence. Therefore, we assume from now on that B is a G-CW

complex.

Suppose that the n-skeleton, B(n), of B is defined by attaching maps αi :
G
H × ∂∆n → B(n−1). Let ei denote

the inclusion of the cell into B(n), ei : G
H × ∆n → B(n). Define P ∂∆

n

i to be the pullback of αi along p,

and P∆n

i to be the pullback of ei along p. Then, using [ML86, Lemma 3 and Theorem 6], we have that

P ∂∆
n

i
∼= Γ

Λ × ∂∆n, and P∆n

i
∼= Γ

Λ × ∆n, where Λ ∩ Π = 1 and q(Λ) = H. Using Lemma 6.2.3, we have a

pushout:
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⊔iP ∂∆
n

i p−1(B(n−1))

⊔iP∆n

i p−1(B(n))

which exhibits E as a Γ-CW complex.

6.5 Simplicial Spaces and Fibrations

Since geometric realisation of simplicial spaces preserves finite limits, it would not be too surprising if geo-

metric realisation takes ‘locally trivial’ maps of simplicial spaces to locally trivial Hurewicz fibrations. The

purpose of this section is to prove such a theorem, which reads as follows:

Theorem 6.5.1: If p : X → Y is a locally F -trivial map of simplicial spaces, and Y is a proper simplicial

space, then |p| is a Hurewicz fibration.

For the precise definition of a locally F -trivial map of simplicial spaces see Definition 6.5.8. The proof we give

is inspired by the proof of Goerss and Jardine that geometric realisation takes minimal fibrations to Hurewicz

fibrations, [GJ09, Ch. I. Theorem 10.9]. In that context, Theorem 10.9 is a key component for showing that

geometric realisation takes Kan fibrations to Hurewicz fibrations. As an application of Theorem 6.5.1, we

recover the theorem:

Theorem 6.5.2: If G is a topological group with a nondegenerate basepoint, then, for any left G-space X

and right G-space Y, B(Y,G,X) → B(Y,G, ∗) is a Hurewicz fibration.

For a more direct proof, see [May75, Theorem 8.2] and corollaries. Taking Y = ∗ and X = G, we can

deduce that the orbit map EG → BG is a Hurewicz fibration, whenever G is a topological group with a

nondegenerate basepoint.

We begin with a discussion of locally trivial maps of spaces, before moving on to simplicial spaces:

Definition 6.5.3: Let F be a space. We call a map f : X → Y locally F -trivial over a subspace A of Y if

there is a homeomorphism ϕA : f−1(A) → A× F over A:

f−1(A) A× F

A
f

ϕA

∼=

πA

Clearly, we have:
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Lemma 6.5.4: If Y has a numerable, locally finite open cover, {Ui}, such that f is locally F -trivial over

each Ui, then f is a Hurewicz fibration.

Proof. See [May99, pg. 51].

The next lemma is central to our main theorem:

Lemma 6.5.5: Let F be a space, let f : X → Y be a map, and let A,B be subspaces of Y such that A ⊂ B,

A is a retract of B, and f is locally F -trivial over A and B via homeomorphisms ϕA and ϕB respectively.

Then f is locally F -trivial over B via a homeomorphism ϕ
′

B which agrees with ϕA on f−1(A).

Proof. Form the diagram:

f−1(A) A× F A× F

f−1(B) B × F B × F

B B B

ϕA

ϕB
σ

ϕB
ϵ

1 1

where σ = ϕAϕ
−1
B and ϵ(b, f) = (b, πFσ(r(b), f)). Then all horizontal arrows are homeomorphisms, and we

can define ϕ
′

B = ϵϕB .

Corollary 6.5.6: Let F be a space, f : X → Y be a map, and A,B closed subspaces of Y such that f is

locally F -trivial over A and B. If A ∩ B is a retract of B, then f is locally F -trivial over A ∪ B via a

homeomorphism ϕA∪B which agrees with ϕA on f−1(A).

As a quick application we have:

Lemma 6.5.7: If Y is a CW complex, and f : X → Y is a map which is locally F -trivial over the images of

every cell, ϵ(Dn), then f is a Hurewicz fibration.

Proof. We can express Y as the transfinite composite of maps Yλ → Yλ+1 where each Yλ+1 is obtained from

Yλ by attaching a single cell. Given a pair of subspaces (A,U) of some Yλ such that U ⊂ A, A is closed, U is

open and numerable, and p is locally F -trivial over A, we can extend (A,U) to such a pair, (Ã, Ũ), on Y by

using open/closed collars around U and A respectively corresponding to half the radius of each attached cell,

Dn. It follows by induction that Ã is locally F -trivial, using Corollary 6.5.6, and that Ũ is numerable. If we

single out the pairs (A,U) of the form (B̄(0, 12 ), B(0, 12 )) corresponding to interior balls of half the radius in

each cell, then the corresponding cover of Y by the induced Ũ is a locally finite numerable open cover of Y

such that p is locally F -trivial over each Ũ . The result now follows from Lemma 6.5.4.
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Our next task is to define a locally F -trivial map of simplicial spaces:

Definition 6.5.8: Let F be a simplicial space and f : X → Y a map of simplicial spaces. Define Pn to be

the pullback:

Pn X

Yn ×∆n Y

⌟
f

where an underline denotes the constant simplicial space on the underlined space. We say that f is locally

F -trivial if, for every n ≥ 0, there is an homeomorphism of simplicial spaces Yn×∆n×F → Pn over Yn×∆n:

Yn ×∆n × F Pn

Yn ×∆n

∼=

From this point on, the reader would benefit from being familiar with the basic properties of the geometric

realisation of a simplicial space, X, as developed in [May72, Chapter 11], particularly with regard to the

topology on the geometric realisation, |X|, being equivalent to the topology induced by the filtration FnX.

If p : X → Y is any map of simplicial spaces, then upon passage to geometric realisations, and using the

notations of [May72, Definition 11.1], we have a diagram of spaces:

P∂ p−1(Fn−1Y )

P∆ p−1(FnY )

s(Yn−1)×∆n ∪ Yn × ∂∆n Fn−1Y

Yn ×∆n FnY

q

p

q α

ϵ

p

where the bottom square is a pushout and the vertical squares are pullbacks. By Lemma 6.2.3, the top

square is also a pushout, since s(Yn−1) → Yn is a closed inclusion. If p is locally F -trivial, then we have

P∆
∼= Yn ×∆n ×F over Yn ×∆n, and P∂ ∼= (s(Yn−1)×∆n ∪ Yn × ∂∆n)×F over s(Yn−1)×∆n ∪ Yn × ∂∆n.

Recall that a simplicial space is proper if, for every n, s(Yn−1) → Yn is a Hurewicz cofibration. In this case,

let (H,λ) denote (Yn ×∆n, s(Yn−1)×∆n ∪ Yn × ∂∆n) as an NDR-pair. Then, H(−, 1) defines a retraction
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r : λ̄−1([0, 1)) → s(Yn−1) ×∆n ∪ Yn × ∂∆n, where λ̄−1([0, 1)) denotes the closure of λ−1([0, 1)). Our main

theorem now states:

Theorem 6.5.9: If p : X → Y is a locally F -trivial map of simplicial spaces, and Y is a proper simplicial

space, then |p| is a Hurewicz fibration.

Proof. Suppose inductively that we have a locally finite numerable open cover {Ui}i∈I of Fn−1Y such that

p is locally F -trivial over each Ui. For each i ∈ I, let V
′

i = r−1α−1(Ui) ∩ λ−1((0, 1)), where r, λ and α are

as defined above. Let Wi = ϵ(V
′

i ) ∪ Ui, which can be viewed as a collar around Ui. Then Wi is open in

FnY , since Ui is open in Fn−1Y . We’ll show that p is locally F -trivial over Wi. By assumption, we have a

trivialisation:

p−1(Ui) Ui × F

Ui

ϕUi

∼=

Letting U
′

i = α−1(Ui), pulling back along α induces a trivialisation:

q−1(U
′

i ) U
′

i × F

U
′

i

ϕ
U

′
i

∼=

Since q is locally F -trivial over V
′

i , Lemma 6.5.6 implies that there is a trivialisation of q over V
′

i which

agrees with ϕU ′
i
on q−1(U

′

i ), call it ϕV ′
i
:

q−1(V
′

i ) V
′

i × F

V
′

i

ϕ
V

′
i

∼=

By Lemma 6.2.3, p−1(Wi) is the pushout of the maps q−1(U
′

i ) → q−1(V
′

i ) and q
−1(U

′

i ) → p−1(Ui). Similarly,

since left adjoints preserves colimits,Wi×F is the pushout of the maps U
′

i×F → V
′

i ×F and U
′

i×F → Ui×F .

Therefore, ϕV ′
i
and ϕUi induce a homeomorphism ϕWi :
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p−1(Wi) Wi × F

Wi

ϕWi

∼=

which shows that p is locally F -trivial over Wi, as desired. We now explain how to complete the inductive

proof of the theorem. We define W
′
= λ−1(( 12 , 1]) ⊂ Yn × ∆n and let W = ϵ(W

′
). Then, W is an open

subspace of FnY and p is locally F -trivial over W , since W
′ → W is a homeomorphism, via Lemma 6.2.3.

It is clear that W is a numerable open subspace of FnY . We also need to check that each Wi is a numerable

subspace of FnY . If Ui = µ−1
i ((0, 1]), for some µi : Fn−1Y → I, we can define νi : FnY → I using the map

µi, and the map κ on Yn ×∆n defined by:

κ(y, t) =


(1− λ(y, t))µiαr(y, t), if (y, t) ∈ λ̄([0, 1))

0, if λ(y, t) = 1

So κ−1((0, 1]) = V
′

i and ν−1
i ((0, 1]) = Wi. Now observe that {Wi}i∈I along with W is a locally finite

numerable cover of FnY , and if y ∈ Fn−1Y has an open neighbourhood P in Fn−1Y intersecting Uj only if

j ∈ J ⊂ I, then there exists an open neighbourhood Q of y in FnY which intersects Wj only if j ∈ J and

doesn’t intersect W . Moreover, we can take Q ∩ Fn−1Y = P . Note also that Wi ∩ Fn−1Y = Ui, and ϕWi

agrees with ϕUi
on p−1(Ui). Therefore, we can iterate this procedure along the sequential colimit of the maps

FiY → Fi+1Y , and we will end up with a numerable locally finite open cover of Y , such that p is locally

F -trivial over each open set in the cover. It follows that p is a Hurewicz fibration by Lemma 6.5.4.

We will now apply Theorem 6.5.9 to prove that the orbit map EG→ BG is a Hurewicz fibration, whenever

G is a topological group with a nondegenerate identity element, which we define to be the basepoint. It is

straightforward to show that this condition ensures that B(Y,G,X) is a proper simplicial space, [May75,

Proposition 7.1]. We now prove:

Theorem 6.5.10: If G is a topological group with a nondegenerate basepoint, then, for any spaces X and Y ,

B(Y,G,X) → B(Y,G, ∗) is a Hurewicz fibration.

Proof. We will show that the corresponding map of simplicial spaces is X-locally trivial. We have a commu-

tative square:
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B(Y,G,X)
n
×∆n B(Y,G,X)

B(Y,G, ∗)
n
×∆n B(Y,G, ∗)

and, therefore, we have an induced map of simplicial spaces ϕ : B(Y,G,X)
n
× ∆n ∼= B(Y,G, ∗)

n
× X ×

∆n → Pn over B(Y,G, ∗)
n
× ∆n. It suffices to show that ϕ is a homeomorphism. A generic element of

B(Y,G, ∗)
n
×X ×∆n

m is of the form α = (ỹ, g̃1, ..., g̃n, x̃, ∂̃), where ∂̃ is a morphism from m → n in ∆. A

generic element of (Pn)m is of the form β = ((y, g1, ..., gn, ∂), (y
′
, g

′

1, ..., g
′

m, x
′
)), where ∂ is a morphismm → n

in ∆ and ∂(y, g1, ..., gn) = (y
′
, g

′

1, ..., g
′

m) in B(Y,G, ∗). Now β = ϕ(α) iff ỹ = y, g̃1 = g1, ..., g̃n = gn, ∂̃ = ∂

and x̃ = h−1x
′
where h is a product of the gi which depends on ∂. It follows that for every β there is a

unique α such that ϕ(α) = β, so ϕ is a continuous bijection. We will show that ϕ is proper, in the sense

of Lemma 6.2.1. Using the existence of inverses, and the fact that ∆n
m is a discrete space, we have that

B(Y,G,X)
n
× ∆n → B(Y,G,X) × B(Y,G, ∗)

n
× ∆n is the inclusion of a retract. It follows that if A is

compact Hausdorff in (Pn)m, then the closed subspace ϕ−1(A) is contained within a compact subspace, and

therefore is compact itself.

WhenG is a topological monoid with a nondegenerate basepoint, it is straightforward to check thatB(Y,G,X) →

B(Y,G, ∗) is not necessarily a Hurewicz fibration. However, as explained in [May90], it is possible to use an

inductive argument of a similar nature to our proof of Theorem 6.5.9 to prove:

Theorem 6.5.11: If G is a grouplike topological monoid with a nondegenerate basepoint, then B(Y,G,X) →

B(Y,G, ∗) is a quasifibration.

Proof. See [May90].
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Basel, 1 edition, 2009.

[Hal54] P. Hall. Finiteness conditions for soluble groups. Proceedings of the London Mathematical Society,

s3-4(1):419–436, 1954.

[Hil76] P. Hilton. On G-spaces. Boletim da Sociedade Brasileira de Matemática - Bulletin/Brazilian
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